CT-Mamba:一种用于低剂量CT降噪的混合卷积状态空间模型 论文解读

论文:CT-Mamba: A Hybrid Convolutional State Space Model for Low-Dose CT Denoising

代码:zy2219105/CT-Mamba,作者称将会在论文正式发表后提供。

本文参考了该网站,其对CT-Mamba提供了更详细的描述:

https://www.aimodels.fyi/papers/arxiv/ct-mamba-hybrid-convolutional-state-space-model

文章目录

    • 摘要
    • 模型简述
    • 表现结果
    • 结论

摘要

低剂量CT(LDCT)显著降低了患者接受的辐射剂量,但剂量的减少会带来额外的噪声和伪影。目前基于卷积神经网络(CNN)的降噪方法在远程建模能力方面存在局限性,而基于Transformer的方法虽然能够进行强大的远程建模,但计算复杂度较高。此外,与正常剂量CT(NDCT)图像相比,基于深度学习技术预测出的降噪图像不可避免地会表现出噪声分布的差异,这也会影响最终的图像质量和诊断结果。本文提出了CT-Mamba,一种用于LDCT降噪的混合卷积状态空间模型。该模型结合了CNN的局部特征提取优势和Mamba捕获远程依赖关系的优势,使其能够全面捕捉局部细节和全局上下文。此外,我们引用了一种创新的空间一致性“Z”形扫描方案,确保图像中各相邻像素之间的空间连续性。我们设计了一种Mamba驱动的深度噪声功率谱(NPS)函数来引导模型训练,确保降噪后的LDCT图像的噪声纹理与NDCT图像的噪声纹理非常相似,从而提到整体图像质量和诊断价值。结果表明,CT-Mamba在降低LDCT去噪方面表现了出色的性能,有望成为将Mamba框架应用于LDCT去噪任务的代表性方法。

CT-Mamba的主要贡献如下:

  1. 我们提出CT-Mamba,一种专为LDCT图像去噪而设计的混合卷积状态空间模型。 该模型集成了小波变换的多尺度分析能力、CNN强大的局部特征提取能力以及Mamba的远程依赖建模能力,能够实现图像内的全面特征捕获。
  2. 我们提出了一致性Z扫描状态空间块(CZSS),它引入了一种创新的空间一致性“Z”形扫描方案。 这种方法确保了图像中各相邻像素之间的空间连续性,增强了模型保留细节并提高去噪效果的能力。 
  3. 为了保证去噪后的LDCT图像能够准确还原出NDCT的噪声纹理,本研究还设计了基于Mamba驱动的深度NPS损失(Deep NPS Loss)。 
  4. 使用影像组学,通过比较去噪LDCT图像和NDCT图像之间不同器官的影像组学特征的统计分布以及成对特征的平均绝对误差来评估所提出的CT-Mamba。

模型简述

CT-Mamba 是一个创新的混合卷积状态空间模型,旨在提高LDCT图像的去噪效果。接下来,我们将简单概述CT-Mamba框架的整体设计及其工作流程。

1.轻量级特征提取网络(PFEN)

CT-Mamba框架的第一步是通过一个轻量级的特征提取网络(Progressive Feature Extraction Network,简称PFEN)提取图像的基本特征。PFEN将输入的LDCT图像分解为不同的层次,逐渐捕获LDCT图像的主要空间特征,同时融合LDCT图像的原始信息。

通过PFEN,CT-Mamba能够在初步阶段就捕获到图像的主要特征,并为后续处理提供更加丰富的空间信息。该网络的设计既高效又能有效减少计算负担,是整个框架中的重要组成部分之一。

2.小波变换与多尺度分析

接下来,CT-Mamba通过小波变换将图像分解为不同的频率组件。在这一过程中,图像被分解为低频组件和多个高频组件。小波变换不仅能够帮助我们提取图像中的关键细节,还能在不同的频率尺度上进行图像分析,从而增强去噪过程的精度。

3.高频特征提取网络(HFEN)与频域注意力模块(FDAM)

小波变换后,虽然水平、垂直和对角方向的高频分量被独立分解,但它们仍然表现出一定的相关性。 作者认为,对角线方向的高频信息与水平或垂直方向的高频信息之间的相关性一般强于水平和垂直方向信息之间的相关性。 基于这一见解,设计了一种结合高频特征提取网络的融合策略,该结构如图2所示。通过将水平和垂直方向的高频信息融合到对角线方向,反之亦然,该策略促进了高频分量之间的有效交互。 这使得网络能够更好地捕获图像内的复杂结构特征,从而提高整体性能。

基于傅里叶变换的频域注意力模块(FDAM)用于增强小波域的低频特征,如图3所示。提取的傅里叶谱中的每个网格包含 有关低频特征的全局信息,能够在频域中对远程空间依赖性进行有效建模。 通过FDAM的增强,为位于低频分支的MSC-Mamba提供了更丰富的低频特性,从而优化了整体结构信息的建模,提高了CT-Mamba的性能。

4.多尺度一致性Mamba(MSC-Mamba)

多尺度一致性曼巴架构(MSC-Mamba)来学习小波变换分解获得的每个频率分支的特征,如图1(b)所示。MSC-Mamba 通过集成一致性 Z 扫描状态空间块 (CZSS) 捕获并融合从三种不同尺度(32×32、16×16 和 8×8)学习到的频率特征。 在较低尺度下,MSC-Mamba 有效捕获全局特征信息,而在较高尺度下,它更关注局部细节。 通过结合不同尺度的特征学习,MSC-Mamba 有效确保空间一致性,提供卓越的去噪性能。

5.一致性“Z”形扫描模块(CZSS)

CT-Mamba的一个创新点是其一致性“Z”形扫描模块(Coherence Z-Scan State Space Block,简称CZSS),它通过空间一致性“Z”形扫描方式,确保图像中各相邻像素在扫描过程中的连贯性,从而提高去噪效果和图像细节保留。

6.基于Mamba驱动的深度噪声功率谱函数(Deep NPS Loss)

为了确保去噪后的LDCT图像能够与正常剂量CT(NDCT)图像在噪声纹理上保持一致,CT-Mamba设计了一种基于Mamba驱动的深度噪声功率谱(NPS)损失函数。该损失函数通过对比去噪图像和NDCT图像的噪声分布,优化去噪过程,确保去噪后图像的噪声纹理与NDCT图像更加接近。

具体应用方法:

由于从单张医学图像中很难将噪声单独分离,因此设计了一个双分支结构。通过从LDCT图像中减去NDCT图像,获得参考噪声,通过从模型预测图像中减去LDCT图像,我们获得预测噪声。由于每张图像都可以抽象成为信号与噪声的组合,因此这两个噪声成分之间的差异仅在于模型预测图像与NDCT图像中存在的噪声。通过基于这一对噪声的NPS分析,我们可以引导模型生成噪声分布更接近NDCT图像的图像。

基于噪声功率谱的损失设计对于LDCT图像降噪任务非常具有实际物理意义,以下是我的个人理解:

在正常剂量图像中,噪声的来源通常包括系统噪声,探测器噪声,散射噪声等等。虽然NDCT图像的噪声比LDCT的要小,但它仍然存在。因此实际上,完全去除LDCT的噪声是不现实的,因为NDCT本身并不是完美的。

因此,在去噪过程中,不能期望去除所有噪声,而是需要在去噪的同时保持图像的自然噪声纹理,使得去噪后的图像尽量接近NDCT图像的噪声分布。否则,过度去噪可能导致图像质量下降,细节丢失,甚至影响临床诊断。

CT-Mamba设计的NPS损失函数的物理意义在于确保去噪后的图像噪声纹理与NDCT图像的噪声特性相似。这是因为,尽管NDCT图像本身有噪声,但它代表了正常剂量CT扫描的“标准”,因此其噪声分布具有一定的参考价值。

7.特征融合与优化

在CT-Mamba末端,同样设计了一种轻量级的渐进式特征融合网络(PFFN),该网络在两个分支之间执行特征重组。这使得从小波域提取的特征能够高效集成和优化。

PFEN与PFFN这两个网络协同工作,有效捕获和处理空间信息,同时显著降低模型的计算复杂性。通过在空间和小波域中的联合处理,输出图像的质量得到了显着提升。

表现结果

CT-Mamba在常见的图像处理方面的多个评价指标上均优于该领域代表性方法(PSNR、SSIM、RMSE),作者还指出这些指标不足以反应临床相关性。人类阅读者才是评估医学图像的黄金标准,但进行多读者的研究通常是耗时且昂贵的,一些研究报导,包括视觉信息保真度(VIF)在内的一些指标更能反映出临床相关性,因此作者也用了VIF进行评估,得到与常见指标一致的结论。

通过分析NPS,得出Deep NPS Loss的有效性。

此外,该文还使用影像组学特征评估CT-Mamba的性能。图像中的影像组学特征对于临床诊断至关重要!!结果显示,提出的CT-Mamba在所有靶器官上都表现出优异的性能,有效地保留了LDCT图像中多个器官的形状和纹理特征,展示了其在临床应用中的潜在价值。

结论

CT-Mamba在去噪效果、噪声纹理保留和放射学特征恢复方面表现出色,有望成为Mamba框架在LDCT去噪任务中代表性方法的潜力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值