第三周学习周报
- 摘要
- Abstract
- 深度学习
-
- 1. Classification
- 1.1 Classification的应用场景
- 1.2 Classification宝可梦案例
- 1.3 Classification总结以及拓展
- 2. Logistic Regression(逻辑回归)
- 3. Generative(生成模型) V.S. Discriminative(判别模型)
- 4. Multi-class Classification
- 总结
摘要
这一周学习了classification的宝可梦案例,对Classification的应用场景、Classification的实现步骤、以及对Probability Distribution(概率分布),如:高斯分布、和一些概率论的基础知识进行了学习。此外还学习了Logistic Regression(逻辑回归),学习了Logistic Regression的三个步骤和它的限制,并理清了Generative(生成模型) V.S. Discriminative(判别模型)的区别以及优劣势,其中学习到了贝叶斯公式以及伯努利分布以及交叉熵的计算。最后对多个Class的分类过程进行学习,懂得了其过程。
Abstract
This week, I studied the Pok é mon case of classification, including its application scenarios, implementation steps, and the basics of probability distribution such as Gaussian distribution and probability theory. In addition, I also learned about Logistic Regression, the three steps and limitations of Logistic Regression, and clarified the differences and advantages and disadvantages of Generative V.S. Discriminative models. I learned about Bayesian formulas, Bernoulli distributions, and the calculation of cross entropy. Finally, I learned the classification process of multiple classes and understood its process.
深度学习
1. Classification
1.1 Classification的应用场景
classification常常用于分类问题
常见的场景有:
1、信用分评估:根据收入、职业、年龄综合因素作为input,最后决定是否接受借贷。
2、医疗诊断:根据现在的症状、年龄、性别等作为input,最后输出疾病类型。
3、手写识别:根据手写的内容作为input,输出手写的字。

1.2 Classification宝可梦案例
1.2.1 案例的背景说明以及实际作用
接下来,我们继续使用宝可梦的例子来学习Classification。
我们需要实现的就是不同的宝可梦,来判断它属于哪一个属性(即宝可梦作为input,属性为output)
比如:比卡丘 = 电属性、杰尼龟 = 水属性 等等

我们如何用宝可梦作为input呢?
我们可以用数字来表示宝可梦,因为我们的宝可梦都是由很多数值属性组成,例如:血量(HP)、攻击力(Attack)、防御力(Defense)等
所以,我们可以用7个数字组成的vector(向量)表示一只宝可梦
下图中,我们就可以使用如下数字来表示比卡丘。

那我们预测宝可梦属性有什么作用呢?
下图是一直1818的属性相克表。
如果我们正确的使用classification预测到了属性,在宝可梦对决中,根据1818的属性相克表,我们就可以使用合理的战略去战胜对方的宝可梦了。

1.2.2 拓展:用Regression处理Classification问题存在的弊端
我们之前学习了Regression,假设我们在不了解Classification之前,用Regression去解决我们现在的问题会存在判断失误的问题
下图中,我们直接把Classification视为二分类问题,Class 1 代表目标为 1 ;Class 2 代表目标为 -1(因为Classification 输出的是一个数字结果,如:0.8、0.6等等)
这个例子中简单来说就是结果越接近1就是Class 1;越接近-1就是为Class 2

假设我们用这个Model
b + w 1 x 1 + w 2 x 2 = 0 b + w_{1}x_{1} + w_{2}x_{2} = 0 b+w1x1+w2x2=0
为分界线,即在绿色线上边>0,在绿色线下方<0,按照下图左1的分布情况来说,我们完成分类还是能够正确进行的。

但是!
如果像右图的情况,结果如下:

再者,如果我们有很多分类,他们之间并不存在关系,我们也无法使用Regression的Model完成。
1.2.3 Classification思路
如下图:

其中perceptron,SVM的概念如下:
感知机(perceptron):
感知机(perceptron)
又称“人工神经元”或“朴素感知机”,由Frank Rosenblatt于1957年提出。
作为神经网络的起源算法,通过深入学习可以帮助我们更好的理解神经网络的部分工作原理。
感知机接受多个输入信号,输出一个信号。感知机的信号只有“0(不传递信号)”和“1(传递信号)”两种。
SVM(支持向量机):
支持向量机(Support Vector Machine, SVM)
一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier)
其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)
这两种方法,我们后续再进行研究学习。
1.2.3.1 生成模型(Generative Models)
下面我们用两个盒子的案例来认知Generative Models

解释如下:
P ( X ∣ Y ) P(X|Y) P(X∣Y)
表示在Y的前提下,抽到X的几率有多少

所以蓝球从Box1里面抽出的概率表示为:
P ( B 1 ∣ Blue ) = P ( Blue ∣ B 1 ) P ( B 1 ) P ( Blue ∣ B 1 ) P ( B 1 ) + P ( Blue ∣ B 2 ) P ( B 2 ) \mathrm{P}\left(\mathrm{B}_{1} \mid \text { Blue }\right)=\frac{P\left(\text { Blue } \mid B_{1}\right) P\left(B_{1}\right)}{P\left(\text { Blue } \mid B_{1}\right) P\left(B_{1}\right)+P\left(\text { Blue } \mid B_{2}\right) P\left(B_{2}\right)} P(B1∣ Blue )=P( Blue ∣B1)P(B1)+P( Blue ∣B2)P(B2)P( Blue ∣B1)P(B1)
假设我们的Two Boxes变为Two Class,其他的都跟着改变,那么我们想要求一个x在Class 1的概率。

同理得,我们求得x在Class 1 的几率为:
P ( C 1 ∣ x ) = P ( x ∣ C 1 ) P ( C 1 ) P ( x ∣ C 1 ) P ( C 1 ) + P ( x ∣ C 2 ) P ( C 2 ) \mathrm{P}\left(\mathrm{C}_{1} \mid \text { x }\right)=\frac{P\left(\text {x} \mid C_{1}\right) P\left(C_{1}\right)}{P\left(\text { x } \mid C_{1}\right) P\left(C_{1}\right)+P\left(\text { x } \mid C_{2}\right) P\left(C_{2}\right)} P(C1∣ x )=P( x ∣C1)P(C1)+P( x ∣C2)P(C2)P(x∣C1)P(C1)
而以下这些概率为
Prior(先验概率):
先验概率(prior probability):是指根据以往经验和分析得到的概率
P ( C 1 ) P\left(C_{1}\right) P(C1)
P ( C 2 ) P\left(C_{2}\right) <

最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



