学习笔记 更相损减术

介绍

更相减损术是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,但它适用于任何需要求最大公约数的场合。

思想

九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,原文是:

1

可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也。以等数约之。

白话文译文:

(如果需要对分数进行约分,那么)可以折半的话,就折半(也就是用2来约分)。如果不可以折半的话,那么就比较分母和分子的大小,用大数减去小数,互相减来减去,一直到减数与差相等为止,用这个相等的数字来约分。

使用步骤

第一步:任意给定两个正整数;判断它们是否都是偶数。若是,则用2约简;若不是则执行第二步。

第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止。

则第一步中约掉的若干个2的积与第二步中等数的乘积就是所求的最大公约数。

其中所说的“等数”,就是公约数。求“等数”的办法是“更相减损”法。

实例

例1、用更相减损术求98与63的最大公约数

解:由于63不是偶数,把98和63以大数减小数,并辗转相减

98-63=35

63-35=28

35-28=7

28-7=21

21-7=14

14-7=7

所以,98和63的最大公约数等于7。

例2、用更相减损术求260和104的最大公约数。

解:由于260和104均为偶数,首先用2约简得到130和52,再用2约简得到65和26。

此时65是奇数而26不是奇数,故把65和26辗转相减

65-26=39

39-26=13

26-13=13

所以,260与104的最大公约数等于13乘以第一步中约掉的两个2,即13*2*2=52。

代码实现

//迭代形式
#include<stdio.h>
int main()
{
	int n = 0, m = 0;
	scanf("%d %d", &n, &m);
	while (n != m)
	{
		if (n > m)
		{
			n -= m;
		}
		else 
		{
			m -= n;
		}
	}
	printf("%d", n);
	return 0;
}
//递归形式
#include<stdio.h>
int gcd(int n, int m)
{
	if (n == m)
	{
		return n;
	}
	else if (n > m)
	{
		n -= m;
	}
	else
	{
		m -= n;
	}
	return gcd(n, m);
}
int main()
{
	int n = 0, m = 0;
	scanf("%d %d", &n, &m);
	printf("%d", gcd(n, m));
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值