介绍
欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。
算法简介
欧几里得算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里得在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里得算法。
扩展欧几里得算法可用于RSA加密等领域。
假如需要求 1997 和 615 两个正整数的最大公约数,用欧几里得算法,是这样进行的:
1997 / 615 = 3 (余 152)
615 / 152 = 4(余7)
152 / 7 = 21(余5)
7 / 5 = 1 (余2)
5 / 2 = 2 (余1)
2 / 1 = 2 (余0)
至此,最大公约数为1
以除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公约数,所以就得出了 1997 和 615 的最大公约数 1。
代码实现
//递归实现
#include<stdio.h>
int gcd(int n, int m)
{
if (n % m == 0)
{
return m;
}
else
{
return gcd(m, n % m);
}
}
int main()
{
int n = 0, m = 0;
scanf("%d %d", &n, &m);
printf("%d", gcd(n, m));
return 0;
}
//迭代实现
#include<stdio.h>
int main()
{
int n = 0, m = 0;
scanf("%d %d", &n, &m);
while (n % m != 0)
{
int temp = n % m;
n = m;;
m = temp;
}
printf("%d", m);
return 0;
}