TWS耳机延迟问题解决方案

文章讨论了TWS耳机因蓝牙延迟问题对电竞用户的影响,提出2.4G无线连接作为解决方案,其速度更快,延迟降低至15ms。产品采用双模连接和手机转接器,其中LDR6023CPD芯片确保OTG充电和高速数据传输。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前市面上的TWS耳机都是采用蓝牙连接手机,而蓝牙的传输速率为24Mbps,所以不可避免的会产生延迟问题,蓝牙耳机的延迟普遍在50-100ms,那么50ms是什么概念,一秒等于1000ms(毫秒),那50ms就是0.05秒,在蓝牙耳机听歌的时候其实用户是感受不到延迟的,只会在特定的一些应用场景才会感受到,比如在高帧率模式下看电影玩游戏,用户会感受到音画不同步,这对于普通用户最多是感觉有点怪,但对于电竞选手,50ms的延迟足以影响比赛结果,所以厂商针对电竞用户的这个痛点,开发出了新的连接方式。

当前市场最为看好的是加入2.4G无线连接,首先2.4G无线速率可达300Mbps,是蓝牙的十倍有余,延迟可以做到15ms左右(0.015秒),跟有线连接对比已经相差无异。我们看到产品主要分为两个部分,一个是TWS耳机,一个是手机转接器,耳机采用双模连接方式,2.4G和蓝牙,手机转接器采用Type-C接口连接手机,原理其实就是通过手机OTG音频外放,然后音频数据通过2.4G无线发射给耳机。

虽然采用手机转接器解决了延迟问题,但是手机只有一个Type-C接口,为了不影响充电功能,手机转接器加入了Type-C母座来顶替充电功能,想实现OTG功能的同时满足能够充电,必须加个PD协议芯片,我们了解到产品PD芯片采用的是乐得瑞科技的LDR6023C。

LDR6023C可以实现在OTG模式下同时给设备最高100W的功率充电,这样手机转接器既能解决延迟问题又能规避无法充电的短板,可以说是一次相当成功的创新。

基于Python的天气预测与可视化(完整源码+说明文档+数据),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基于Python的天气预测与可视化(完整源码+说明文档+数据)基
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值