Miller-Rabin素数检测算法

本文介绍了Miller-Rabin素数检测算法,包括费马小定理、二次探测定理等理论基础,并详细阐述了算法过程,如随机选取a、计算x和循环验证等步骤。通过多次循环提高正确率,该算法在判断素数时具有较高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天看了一下Miller-Rabin素数检测的算法,总结了一下,希望这篇博客对你们有帮助。

 

先说几个理论基础:

1. 费马小定理:假如p是质数,a是整数,且a、p互质,那么a的(p-1)次方除以p的余数恒等于1,即:a^(p-1)≡1(mod p).

但是反过来却不一定成立,就是说,如果a、p互质,且a^(p-1)≡1(mod p),不能推出p是质数,比如Carmichael数。

2. 二次探测定理:如果p是一个素数,0<x<p,则方程x^2≡1(mod p)的解为x=1或x=p-1。

3. 模运算的规则:(a*b)%n=(a%n * b%n)%n

4. 快速积取模、快速幂取模:可以看看我之前写的一篇博客

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值