动态开点权值线段树其实不用离散化,也不用关注负数,因为和负数没关系了
//#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a, b) memset(a,b,sizeof(a))
#define sz(a) (int)a.size()
#define INF 0x3f3f3f3f
#define DNF 0x7f7f7f7f
#define DBG printf("this is a input\n")
#define fi first
#define se second
#define PiL pair <ll , ll>
#define PLL pair <ll , ll>
#define Pii pair <int , int>
#define mk(a, b) make_pair(a,b)
#define pb push_back
#define LF putchar('\n')
#define SP putchar(' ')
#define p_queue priority_queue
#define CLOSE ios::sync_with_stdio(0); cin.tie(0)
template<typename T>
void read(T &x) {x = 0;char ch = getchar();ll f = 1;while(!isdigit(ch)){if(ch == '-')f *= -1;ch = getchar();}while(isdigit(ch)){x = x * 10 + ch - 48; ch = getchar();}x *= f;}
template<typename T, typename... Args>
void read(T &first, Args& ... args) {read(first);read(args...);}
template<typename T>
void write(T arg) {T x = arg;if(x < 0) {putchar('-'); x =- x;}if(x > 9) {write(x / 10);}putchar(x % 10 + '0');}
template<typename T, typename ... Ts>
void write(T arg, Ts ... args) {write(arg);if(sizeof...(args) != 0) {putchar(' ');write(args ...);}}
using namespace std;
int t;
const int N = 3000050;
int p = 1e7 + 10;
struct Segement_Tree
{
int root , tot , sum[N], lc[N] , rc[N];
void push_up (int rt) {
sum[rt] = sum[lc[rt]] + sum[rc[rt]] ;
}
void update (int &rt , int l , int r , int x, int k)
{
if (!rt) rt = ++ tot;
if (!root) root = 1;
if (l == r)
{
sum[rt] += k;
return ;
}
int mid = (l + r) >> 1;
if (x <= mid)
update(lc[rt], l, mid, x, k);
else
update(rc[rt], mid + 1, r, x, k);
push_up(rt);
return ;
}
int query (int rt , int l , int r, int ql , int qr)
{
if (!rt) return 0;
if (ql <= l && r <= qr) return sum[rt];
int mid = (l + r) >> 1 , ans = 0;
if (ql <= mid) ans += query (lc[rt] , l , mid , ql , qr);
if (mid < qr) ans += query (rc[rt] , mid + 1 , r , ql , qr);
return ans;
}
int Kth (int rt , int l , int r, int k)
{
if (!rt) return -1;
if (l == r) return l;
int mid = (l + r) >> 1;
if (k <= sum[lc[rt]])
return Kth (lc[rt], l , mid , k);
else
return Kth (rc[rt], mid + 1 , r, k - sum[lc[rt]]);
}
}tree;
int main()
{
read (t);
while (t --)
{
int op , x;
read (op , x);
if (op == 1)
tree.update(tree.root, -1e7 , 1e7, x , 1);
if (op == 2)
tree.update(tree.root, -1e7 , 1e7, x , -1);
if (op == 3)
write(tree.query(tree.root,-1e7,1e7,-1e7,x-1)+1), LF;
if (op == 4)
write(tree.Kth(tree.root, -1e7, 1e7, x)), LF;
if (op == 5)
{
int cnt = tree.query(tree.root, -1e7 , 1e7 , -1e7, x - 1);
write(tree.Kth(tree.root, -1e7 , 1e7 , cnt)), LF;
}
if (op == 6)
{
int cnt = tree.query(tree.root, -1e7 , 1e7 , -1e7, x) + 1;
write(tree.Kth(tree.root, -1e7 , 1e7 , cnt)), LF;
}
}
}
移位版
//#define LOCAL
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a, b) memset(a,b,sizeof(a))
#define sz(a) (int)a.size()
#define INF 0x3f3f3f3f
#define DNF 0x7f7f7f7f
#define DBG printf("this is a input\n")
#define fi first
#define se second
#define PiL pair <ll , ll>
#define PLL pair <ll , ll>
#define Pii pair <int , int>
#define mk(a, b) make_pair(a,b)
#define pb push_back
#define LF putchar('\n')
#define SP putchar(' ')
#define p_queue priority_queue
#define CLOSE ios::sync_with_stdio(0); cin.tie(0)
template<typename T>
void read(T &x) {x = 0;char ch = getchar();ll f = 1;while(!isdigit(ch)){if(ch == '-')f *= -1;ch = getchar();}while(isdigit(ch)){x = x * 10 + ch - 48; ch = getchar();}x *= f;}
template<typename T, typename... Args>
void read(T &first, Args& ... args) {read(first);read(args...);}
template<typename T>
void write(T arg) {T x = arg;if(x < 0) {putchar('-'); x =- x;}if(x > 9) {write(x / 10);}putchar(x % 10 + '0');}
template<typename T, typename ... Ts>
void write(T arg, Ts ... args) {write(arg);if(sizeof...(args) != 0) {putchar(' ');write(args ...);}}
using namespace std;
int t;
const int N = 5000010;
int p = 1e7 + 10;
struct Segement_Tree
{
int root , tot, sum[N], lc[N] , rc[N];
void push_up (int i) {sum[i] = sum[lc[i]] + sum[rc[i]] ;}
void update (int &rt , int l , int r , int x, int k)
{
if (!rt) rt = ++ tot;
if (!root) root = rt;
if (l == r)
{
sum[rt] += k;
return ;
}
int mid = (l + r) >> 1;
if (x <= mid) update (lc[rt] , l , mid , x, k);
else update (rc[rt], mid + 1, r , x , k);
push_up(rt);
}
int query (int rt , int l , int r, int ql , int qr)
{
if (!rt) return 0;
if (ql <= l && r <= qr) return sum[rt];
int mid = (l + r) >> 1 , ans = 0;
if (ql <= mid) ans += query (lc[rt] , l , mid , ql , qr);
if (mid < qr) ans += query (rc[rt] , mid + 1 , r , ql , qr);
return ans;
}
int Kth (int rt , int l , int r, int k)
{
if (l == r) return l - p;
int mid = (l + r) >> 1;
if (k <= sum[lc[rt]])
return Kth (lc[rt], l , mid , k);
else
return Kth (rc[rt], mid + 1 , r, k - sum[lc[rt]]);
}
}tree;
int main()
{
read (t);
while (t --)
{
int op , x;
read (op , x);
x += p;
if (op == 1)
tree.update(tree.root, 1 , 3e7, x , 1);
if (op == 2)
tree.update(tree.root, 1 , 3e7, x , -1);
if (op == 3)
write(tree.query(tree.root, 1, 3e7 , 1, x - 1) + 1), LF;
if (op == 4)
write(tree.Kth(tree.root, 1, 3e7, x - p)), LF;
if (op == 5)
{
int cnt = tree.query(tree.root, 1 , 3e7 , 1, x - 1);
write(tree.Kth(tree.root, 1 , 3e7 , cnt)), LF;
}
if (op == 6)
{
int cnt = tree.query(tree.root, 1 , 3e7 , 1, x) + 1;
write(tree.Kth(tree.root, 1 , 3e7 , cnt)), LF;
}
}
}