Codeforces Round #498 (Div. 3) A. Adjacent Replacements

探讨一种特殊的数组处理算法——Mishka的相邻替换算法,该算法通过一系列规则将数组中的特定数值进行转换。本篇重点介绍了算法的实现过程,并提供了一个简单的C++示例程序来展示如何对输入数组应用这一算法。
摘要由CSDN通过智能技术生成

A. Adjacent Replacements

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Mishka got an integer array aa of length nn as a birthday present (what a surprise!).

Mishka doesn't like this present and wants to change it somehow. He has invented an algorithm and called it "Mishka's Adjacent Replacements Algorithm". This algorithm can be represented as a sequence of steps:

  • Replace each occurrence of 11 in the array aa with 22;
  • Replace each occurrence of 22 in the array aa with 11;
  • Replace each occurrence of 33 in the array aa with 44;
  • Replace each occurrence of 44 in the array aa with 33;
  • Replace each occurrence of 55 in the array aa with 66;
  • Replace each occurrence of 66 in the array aa with 55;
  • ……
  • Replace each occurrence of 109−1109−1 in the array aa with 109109;
  • Replace each occurrence of 109109 in the array aa with 109−1109−1.

Note that the dots in the middle of this algorithm mean that Mishka applies these replacements for each pair of adjacent integers (2i−1,2i2i−1,2i) for each i∈{1,2,…,5⋅108}i∈{1,2,…,5⋅108} as described above.

For example, for the array a=[1,2,4,5,10]a=[1,2,4,5,10], the following sequence of arrays represents the algorithm:

[1,2,4,5,10][1,2,4,5,10] →→ (replace all occurrences of 11 with 22) →→ [2,2,4,5,10][2,2,4,5,10] →→ (replace all occurrences of 22 with 11) →→ [1,1,4,5,10][1,1,4,5,10] →→(replace all occurrences of 33 with 44) →→ [1,1,4,5,10][1,1,4,5,10] →→ (replace all occurrences of 44 with 33) →→ [1,1,3,5,10][1,1,3,5,10] →→ (replace all occurrences of 55 with 66) →→ [1,1,3,6,10][1,1,3,6,10] →→ (replace all occurrences of 66 with 55) →→ [1,1,3,5,10][1,1,3,5,10] →→ …… →→ [1,1,3,5,10][1,1,3,5,10] →→ (replace all occurrences of 1010 with 99) →→ [1,1,3,5,9][1,1,3,5,9]. The later steps of the algorithm do not change the array.

Mishka is very lazy and he doesn't want to apply these changes by himself. But he is very interested in their result. Help him find it.

Input

The first line of the input contains one integer number nn (1≤n≤10001≤n≤1000) — the number of elements in Mishka's birthday present (surprisingly, an array).

The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤1091≤ai≤109) — the elements of the array.

Output

Print nn integers — b1,b2,…,bnb1,b2,…,bn, where bibi is the final value of the ii-th element of the array after applying "Mishka's Adjacent Replacements Algorithm" to the array aa. Note that you cannot change the order of elements in the array.

Examples

input

Copy

5
1 2 4 5 10

output

Copy

1 1 3 5 9

input

Copy

10
10000 10 50605065 1 5 89 5 999999999 60506056 1000000000

output

Copy

9999 9 50605065 1 5 89 5 999999999 60506055 999999999

Note

The first example is described in the problem statement.

以上都是废话

题目要求:

偶数减一后输出

奇数直接输出

#include <iostream>
using namespace std;

const int MAXN = 1e4 + 10;

int arr[MAXN] = {0};

int main()
{	
	int N;
	
	cin>>N;
	
	for(int i = 0; i < N; i++)
	{
		cin>>arr[i];
	}
	
	for(int j = 0; j < N; j++)
	{
		if(arr[j] % 2 == 1)
			cout<<arr[j]<<' ';
		else
			cout<<arr[j] - 1<<' ';
	}
	
	cout<<endl;

	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值