[BFS] [记忆化] [洛谷] P1141 01迷宫

bfs 有稳定向下搜索(距离恒定)的特性

常用来求最优解(首解必定最优)

用队列维护搜索可保持其顺序特性

bfs的过程比dfs容易理解的多

在此不做记录

该题单bfs可以过七个点

三个tle

需要优化

仔细推一遍可以发现

每次求得一点的过程中

可以搜到的点反过来也可以搜到该点

他们的最大可走路径值是完全相同的

所以可以记录下来进行记忆化

#include <iostream>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;

const int MAXN = 1e3 + 10;

int map[MAXN][MAXN];                 //题图
    
int dp[MAXN][MAXN];                  //图的记忆化

int N, M;

int move[5][2] = {{0, 0}, {0, 1}, {0, -1}, {1, 0}, {-1 , 0}};     //移动方向 由题包括本点

int flag[MAXN][MAXN] = {0};         //判重 是否已经搜索过

struct node
{
	int x, y;
}a;

struct rec                         //记录以搜索过的等效位置
{
	int x, y;
}brr[MAXN * MAXN];

queue <node> q; 

void bfs(node a)
{	
	if(dp[a.x][a.y])
	{
		cout<<dp[a.x][a.y]<<endl;
		return ;
	}
	
	q.push(a);

	int ans = 0;

	while(!q.empty())
	{
		a = q.front();

		q.pop();
		
		node t;

		for(int i = 0; i < 5; i++)
		{
			t.x = a.x + move[i][0];
			t.y = a.y + move[i][1];

			if(t.x >= 1 && t.x <= N && t.y >= 1 && t.y <= N && flag[t.x][t.y] == 0 && map[t.x][t.y] + map[a.x][a.y] == 1)         //若点a + 点b == 1 则可搜
			{
				flag[t.x][t.y] = 1;
				
				ans ++;
				
				brr[ans].x = t.x;        //记录
				
				brr[ans].y = t.y;        //记录
				
				q.push(t);
			}
		}
	}

	for(int i = 1; i <= ans; i++)         //brr结构体动态更新复用
		dp[brr[i].x][brr[i].y] = ans;
		
	ans == 0 ? cout<<1<<endl : cout<<ans<<endl; 
}

int main()
{
	cin>>N>>M;

	string s;
	
	for(int i = 1; i <= N; i++)
	{
		cin>>s;

		for(int j = 0; j < N; j++)
		{
			map[i][j + 1] = s[j] - '0';
		}
	}

	while(M--)
	{
		cin>>a.x>>a.y;
		
		//memset(flag, 0, sizeof(flag));         //若不记忆化则需重新标记是否搜过
		
		bfs(a);

	}
	return 0;
}

 

洛谷p1238是一个题目,具体要求是给定一个迷宫,求从起点到终点的最短路径。这个问题可以使用链表来表示迷宫,并使用广度优先搜索算法来求解最短路径。 以下是一个示例代码,演示了如何使用链表和广度优先搜索算法来解决洛谷p1238题目中的迷宫问题: ```python from collections import deque # 定义迷宫的链表节点类 class Node: def __init__(self, x, y, val): self.x = x self.y = y self.val = val self.next = None # 构建迷宫的链表 def build_maze(maze): m = len(maze) n = len(maze[0]) head = Node(0, 0, maze[0][0]) curr = head for i in range(m): for j in range(n): if i == 0 and j == 0: continue node = Node(i, j, maze[i][j]) curr.next = node curr = node return head # 广度优先搜索算法求解最短路径 def bfs(maze): m = len(maze) n = len(maze[0]) visited = [[False] * n for _ in range(m)] queue = deque([(0, 0, 0)]) # (x, y, step) visited[0][0] = True while queue: x, y, step = queue.popleft() if x == m - 1 and y == n - 1: return step for dx, dy in [(1, 0), (-1, 0), (0, 1), (0, -1)]: nx, ny = x + dx, y + dy if 0 <= nx < m and 0 <= ny < n and not visited[nx][ny] and maze[nx][ny] == 0: queue.append((nx, ny, step + 1)) visited[nx][ny] = True return -1 # 示例迷宫 maze = [ [0, 1, 0, 0, 0], [0, 1, 0, 1, 0], [0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 0, 0, 1, 0] ] # 构建迷宫的链表 maze_head = build_maze(maze) # 使用广度优先搜索算法求解最短路径 shortest_path = bfs(maze) print("最短路径长度为:", shortest_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值