自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 Docker 简明教程

DockerImages(镜像)镜像是一个包含程序运行必要以来环境和代码的只读文件,它采用分层的文件系统,将每一层的改变以读写层的形式增加到原来的只读文件上,属于静态文件,类似于程序中的类。DockerContainers(容器)由镜像文件生成的硬件载体,相当于轻量级的虚拟机,类似于程序中的实例。...

2022-07-16 20:55:42 542 1

转载 python 高级语法

*argsarguments,位置参数。传递一个可变长度的参数列表(tuple)给函数实参,将前n个参数给形参后,参数列表剩下的即是参数args。def test_args(first, *args): print('Required argument: ', first) print(type(args)) for v in args: print ('Optional argument: ', v)test_args(1, 2, 3, 4)###

2021-08-11 19:28:05 172

翻译 pytorch常用函数

1.unsqueeze()、unsqueeze_()torch.unsqueeze(input,dim)→ Tensor增加新维度dim,新维度的长度为1.import torchx = torch.Tensor([[[1.0],[2.0],[3.0]],[[7.0],[9.0],[10.0]]])print(x.dim(),x.size()) print(x.unsqueeze(1).dim(),x.unsqueeze(1).size())x.unsqueeze(1)p..

2021-08-08 10:33:29 570

原创 Chapter 11 特征选择和稀疏学习

Chapter 11 特征选择和稀疏学习1 子集搜索与评价一个样本通常有多个属性,如西瓜有色泽,根蒂,颜色等。将属性称之为特征,对一个学习任务而言,有用的特征称之为“相关特征”(relevant feature),用处不大的特征称之为“无关特征”(irrelevant feature)。在特征集合中选出相关特征子集的过程称之为特征选择。特征选择不仅可以解决维数灾难,亦可以降低学习任务的难度。子集搜索(subset search)子集搜索分为前向(forward)搜索,后向(backward)搜索和

2021-07-01 12:11:05 202

原创 Chapter 10 降维与度量学习

Chapter 10 降维与度量学习10.1 k 临近学习k 邻近(k-Nearest Neighbor,kNN)学习是常见的监督学习方法,给定测试样本,基于某种距离度量找到与测试样本最靠近的k个邻居,在分类任务中基于k个邻居的类别标记使用“投票法”输出测试样本的类别标记预测,在回归任务中使用“平均法”基于k个邻居的实值输出平均值作为测试样本的预测。k临近学习基于一个重要假设:任意测试样本 xxx 附近任意小的 $\delta $ 距离范围内总能找到一个训练样本,即训练样本需要进行较大的采样密度(密采

2021-07-01 12:10:44 143

原创 Chapter 9 Clustering 聚类

Chapter 9 Clustering9.1 聚类任务聚类(clustering)是一种研究多、应用广的一种无监督学习(unsupervised learning)算法。将数据集中的样本划分为若干不相交子集,每个子集亦称为‘簇’(cluster)。样本集含有m个n维的无标记样本:D={x1,x2,...,xm}D=\left\{ \boldsymbol{x}_1,\boldsymbol{x}_{2},...,\boldsymbol{x}_m \right\}D={x1​,x2​,...,xm​}

2021-07-01 12:09:59 232

原创 最优化笔记

Optimization 最优化引言在机器学习中,通常构造出一个带有约束条件的目标函数进行优化,学习最优化方法有助于机器学习算法。本章节借助天津大学网课(https://www.xuetangx.com/course/ecust13051002148/4231479?channel=learn_title)对部分最优化方法归纳总结。学习时间:2021/06/21-2021/06/26文章结构:文章目录Optimization 最优化引言1 概念最优化线性/非线性规划目标函数等值线可行域梯度

2021-06-26 15:54:42 1483

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除