/**
* 问:有n阶的楼梯,每次可以走一步或者两步,那么走完n阶楼梯有多少种方式?
* 解:
* 1、由于每次只能走一步或两步,所以迈出最后一步前,必定在n-1阶或n-2阶,即f(n)=f(n-1)+f(n-2)。
* 2、也可以根据数理统计方法,寻找规律,最后可以发现其实是一个斐波那契数列:0,1,2,3,5,8,13,21,34...
*/
public class ClimbingStairs {
public int climbingStairs(int n) {
// 前3步属于特殊情况,需要进行特殊判断。
if (n == 0)
return 0;
if (n == 1)
return 1;
if (n == 2)
return 2;
// 结果集
int result[] = new int[n+1];
// 初始化斐波那契的前3项
result[0] = 0;
result[1] = 1;
result[2] = 2;
// 根据规律得出n阶对应的结果
for (int i=3; i<=n; i++) {
result[i] = result[i-1] + result[i-2];
}
return result[n];
}
public static void main(String[] args) {
int n = 8;
System.out.println(n + "个台阶共有" + new ClimbingStairs().climbingStairs(n) + "种方式攀爬。");
}}