【力扣算法】62-不同路径

题目

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

img

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 n 的值均不超过 100。

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

无官方题解

感想

一开始是想直接排列组合算答案的,后来懒得推公式,就直接一维数组动态规划解决了:

执行用时 :1 ms, 在所有Java提交中击败了93.15%的用户

内存消耗 :32.8 MB, 在所有Java提交中击败了18.56%的用户

class Solution {
    public int uniquePaths(int m, int n) {
        int[] memo = new int[m];
        Arrays.fill(memo,1);
        for(int i=1;i<n;i++){
            for(int j = 1;j<m;j++){
                memo[j]+=memo[j-1];
            }
        }
        return memo[m-1];
    }
}

后来试了一下排列组合,发现面临着数据存不下的问题:下面的在案例“36 7”会Line 3: java.lang.ArithmeticException: / by zero, 感觉36!能够被36(22 * 9)、34(2 * 17)、32(25)、30(2 * 15)、28(22 * 7)、26(2 * 13)、24(23 * 3)、22(2 * 11)、20(22 * 5)、18(2 * 9)、16(24)、14(2 * 7)、12(22 * 3)、10(2 * 5)、8(23)、6(2 * 3)、4(22)、2整除。所以36!能够被22+1+5+1+2+1+3+1+2+1+4+1+2+1+3+1+2+1 = 234整除,超过了int的上限231-1, 相当于左移34位超过了int的位数32位,所以就变成0了。

看来这个方法只适合python这种无限位数的语言啊。java就算是算出来不为0了,溢出也够喝一壶的……

class Solution {
    public int uniquePaths(int m, int n) {
        return factorial(m+n-2)/factorial(m-1)/factorial(n-1);
    }
    private int factorial(int n){
        int res = 1;
        for(int i=1;i<=n;i++){
            res*=i;
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值