题目
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
问总共有多少条不同的路径?
例如,上图是一个7 x 3 的网格。有多少可能的路径?
说明:m 和 n 的值均不超过 100。
示例 1:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右
示例 2:
输入: m = 7, n = 3
输出: 28
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/unique-paths
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
无官方题解
感想
一开始是想直接排列组合算答案的,后来懒得推公式,就直接一维数组动态规划解决了:
执行用时 :1 ms, 在所有Java提交中击败了93.15%的用户
内存消耗 :32.8 MB, 在所有Java提交中击败了18.56%的用户
class Solution {
public int uniquePaths(int m, int n) {
int[] memo = new int[m];
Arrays.fill(memo,1);
for(int i=1;i<n;i++){
for(int j = 1;j<m;j++){
memo[j]+=memo[j-1];
}
}
return memo[m-1];
}
}
后来试了一下排列组合,发现面临着数据存不下的问题:下面的在案例“36 7”会Line 3: java.lang.ArithmeticException: / by zero, 感觉36!能够被36(22 * 9)、34(2 * 17)、32(25)、30(2 * 15)、28(22 * 7)、26(2 * 13)、24(23 * 3)、22(2 * 11)、20(22 * 5)、18(2 * 9)、16(24)、14(2 * 7)、12(22 * 3)、10(2 * 5)、8(23)、6(2 * 3)、4(22)、2整除。所以36!能够被22+1+5+1+2+1+3+1+2+1+4+1+2+1+3+1+2+1 = 234整除,超过了int的上限231-1, 相当于左移34位超过了int的位数32位,所以就变成0了。
看来这个方法只适合python这种无限位数的语言啊。java就算是算出来不为0了,溢出也够喝一壶的……
class Solution {
public int uniquePaths(int m, int n) {
return factorial(m+n-2)/factorial(m-1)/factorial(n-1);
}
private int factorial(int n){
int res = 1;
for(int i=1;i<=n;i++){
res*=i;
}
return res;
}
}