题目
给定一个二叉树,返回其按层次遍历的节点值。 (即逐层地,从左到右访问所有节点)。
例如:
给定二叉树: [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
返回其层次遍历结果:
[
[3],
[9,20],
[15,7]
]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/binary-tree-level-order-traversal
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
如何遍历一棵树
有两种通用的遍历树的策略:
- 深度优先搜索(DFS)
在这个策略中,我们采用深度作为优先级,以便从跟开始一直到达某个确定的叶子,然后再返回根到达另一个分支。深度优先搜索策略又可以根据根节点、左孩子和右孩子的相对顺序被细分为先序遍历,中序遍历和后序遍历。 - 宽度优先搜索(BFS)
我们按照高度顺序一层一层的访问整棵树,高层次的节点将会比低层次的节点先被访问到。
下图中的顶点按照访问的顺序编号,按照 1-2-3-4-5 的顺序来比较不同的策略。
本问题就是用宽度优先搜索遍历来划分层次:[[1], [2, 3], [4, 5]]。
方法 1:递归
算法
最简单的解法就是递归,首先确认树非空,然后调用递归函数 helper(node, level),参数是当前节点和节点的层次。程序过程如下:
- 输出列表称为 levels,当前最高层数就是列表的长度 len(levels)。比较访问节点所在的层次 level 和当前最高层次 len(levels) 的大小,如果前者更大就向 levels 添加一个空列表。
- 将当前节点插入到对应层的列表 levels[level] 中。
- 递归非空的孩子节点:helper(node.left / node.right, level + 1)。
实现
class Solution {
List<List<Integer>> levels = new ArrayList<List<Integer>>();
public void helper(TreeNode node, int level) {
// start the current level
if (levels.size() == level)
levels.add(new ArrayList<Integer>());
// fulfil the current level
levels.get(level).add(node.val);
// process child nodes for the next level
if (node.left != null)
helper(node.left, level + 1);
if (node.right != null)
helper(node.right, level + 1);
}
public List<List<Integer>> levelOrder(TreeNode root) {
if (root == null) return levels;
helper(root, 0);
return levels;
}
}
复杂度分析
时间复杂度:
O
(
N
)
O(N)
O(N),因为每个节点恰好会被运算一次。
空间复杂度:
O
(
N
)
O(N)
O(N),保存输出结果的数组包含 N 个节点的值。
方法 2:迭代
算法
上面的递归方法也可以写成迭代的形式。
我们将树上顶点按照层次依次放入队列结构中,队列中元素满足 FIFO(先进先出)的原则。在 Java 中可以使用 Queue 接口中的 LinkedList实现。在 Python 中如果使用 Queue 结构,但因为它是为多线程之间安全交换而设计的,所以使用了锁,会导致性能不佳。因此在 Python 中可以使用 deque 的 append() 和 popleft() 函数来快速实现队列的功能。
第 0 层只包含根节点 root ,算法实现如下:
- 初始化队列只包含一个节点 root 和层次编号 0 : level = 0。
- 当队列非空的时候:
- 在输出结果 levels 中插入一个空列表,开始当前层的算法。
- 计算当前层有多少个元素:等于队列的长度。
- 将这些元素从队列中弹出,并加入 levels 当前层的空列表中。
- 将他们的孩子节点作为下一层压入队列中。
- 进入下一层 level++。
实现
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> levels = new ArrayList<List<Integer>>();
if (root == null) return levels;
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.add(root);
int level = 0;
while ( !queue.isEmpty() ) {
// start the current level
levels.add(new ArrayList<Integer>());
// number of elements in the current level
int level_length = queue.size();
for(int i = 0; i < level_length; ++i) {
TreeNode node = queue.remove();
// fulfill the current level
levels.get(level).add(node.val);
// add child nodes of the current level
// in the queue for the next level
if (node.left != null) queue.add(node.left);
if (node.right != null) queue.add(node.right);
}
// go to next level
level++;
}
return levels;
}
}
复杂度分析
时间复杂度:
O
(
N
)
O(N)
O(N),因为每个节点恰好会被运算一次。
空间复杂度:
O
(
N
)
O(N)
O(N),保存输出结果的数组包含 N 个节点的值。
作者:LeetCode
链接:https://leetcode-cn.com/problems/two-sum/solution/er-cha-shu-de-ceng-ci-bian-li-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
感想
100和101题代码继续改改就用……
执行用时 :2 ms, 在所有 Java 提交中击败了90.87%的用户
内存消耗 :35.9 MB, 在所有 Java 提交中击败了68.36%的用户
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> res = new LinkedList<>();
if(root==null) return res;
LinkedList<TreeNode> queue = new LinkedList<>();
queue.add(root);
TreeNode nextFirst = null;
TreeNode temp = null;
List<Integer> list = new LinkedList<>();
while(!queue.isEmpty()){
temp = queue.poll();
if(temp==nextFirst) {
nextFirst=null;
res.add(list);
list = new LinkedList<>();
}
list.add(temp.val);
if(temp.left!=null){
queue.add(temp.left);
if(nextFirst==null) nextFirst = temp.left;
}
if(temp.right!=null){
queue.add(temp.right);
if(nextFirst==null) nextFirst = temp.right;
}
}
if(list.size()>0) res.add(list);
return res;
}
}