【力扣算法】111-二叉树的最小深度

题目

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7

返回它的最小深度 2.

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-depth-of-binary-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

树的定义

首先,定义树节点结构 TreeNode。

// Definition for a binary tree node.
public class TreeNode {
  int val;
  TreeNode left;
  TreeNode right;

  TreeNode(int x) {
    val = x;
  }
}

方法 1:递归

算法

最直接的思路就是递归。

我们用深度优先搜索来解决这个问题。

class Solution {
  public int minDepth(TreeNode root) {
    if (root == null) {
      return 0;
    }

    if ((root.left == null) && (root.right == null)) {
      return 1;
    }

    int min_depth = Integer.MAX_VALUE;
    if (root.left != null) {
      min_depth = Math.min(minDepth(root.left), min_depth);
    }
    if (root.right != null) {
      min_depth = Math.min(minDepth(root.right), min_depth);
    }

    return min_depth + 1;
  }
}

复杂度分析

时间复杂度:我们访问每个节点一次,时间复杂度为 O ( N ) O(N) O(N) ,其中 N N N 是节点个数。
空间复杂度:最坏情况下,整棵树是非平衡的,例如每个节点都只有一个孩子,递归会调用 N N N (树的高度)次,因此栈的空间开销是 O ( N ) O(N) O(N) 。但在最好情况下,树是完全平衡的,高度只有 log ⁡ ( N ) \log(N) log(N),因此在这种情况下空间复杂度只有 O ( log ⁡ ( N ) ) O(\log(N)) O(log(N))

方法 2:深度优先搜索迭代

我们可以利用栈将上述解法中的递归变成迭代。

想法是对于每个节点,按照深度优先搜索的策略访问,同时在访问到叶子节点时更新最小深度。

我们从一个包含根节点的栈开始,当前深度为 1 。

然后开始迭代:弹出当前栈顶元素,将它的孩子节点压入栈中。当遇到叶子节点时更新最小深度。

import javafx.util.Pair;
class Solution {
  public int minDepth(TreeNode root) {
    LinkedList<Pair<TreeNode, Integer>> stack = new LinkedList<>();
    if (root == null) {
      return 0;
    }
    else {
      stack.add(new Pair(root, 1));
    }

    int min_depth = Integer.MAX_VALUE;
    while (!stack.isEmpty()) {
      Pair<TreeNode, Integer> current = stack.pollLast();
      root = current.getKey();
      int current_depth = current.getValue();
      if ((root.left == null) && (root.right == null)) {
        min_depth = Math.min(min_depth, current_depth);
      }
      if (root.left != null) {
        stack.add(new Pair(root.left, current_depth + 1));
      }
      if (root.right != null) {
        stack.add(new Pair(root.right, current_depth + 1));
      }
    }
    return min_depth;
  }
}

复杂度分析

时间复杂度:每个节点恰好被访问一遍,复杂度为 O ( N ) O(N) O(N)
空间复杂度:最坏情况下我们会在栈中保存整棵树,此时空间复杂度为 O ( N ) O(N) O(N)

方法 3:宽度优先搜索迭代

深度优先搜索方法的缺陷是所有节点都必须访问到,以保证能够找到最小深度。因此复杂度是 O ( N ) O(N) O(N)

一个优化的方法是利用宽度优先搜索,我们按照树的层次去迭代,第一个访问到的叶子就是最小深度的节点,这样就不要遍历所有的节点了。

import javafx.util.Pair;
class Solution {
  public int minDepth(TreeNode root) {
    LinkedList<Pair<TreeNode, Integer>> stack = new LinkedList<>();
    if (root == null) {
      return 0;
    }
    else {
      stack.add(new Pair(root, 1));
    }

    int current_depth = 0;
    while (!stack.isEmpty()) {
      Pair<TreeNode, Integer> current = stack.poll();
      root = current.getKey();
      current_depth = current.getValue();
      if ((root.left == null) && (root.right == null)) {
        break;
      }
      if (root.left != null) {
        stack.add(new Pair(root.left, current_depth + 1));
      }
      if (root.right != null) {
        stack.add(new Pair(root.right, current_depth + 1));
      }
    }
    return current_depth;
  }
}

复杂度分析

时间复杂度:最坏情况下,这是一棵平衡树,我们需要按照树的层次一层一层的访问完所有节点,除去最后一层的节点。这样访问了 N / 2 N/2 N/2 个节点,因此复杂度是 O ( N ) O(N) O(N)
空间复杂度:和时间复杂度相同,也是 O ( N ) O(N) O(N)

作者:LeetCode
链接:https://leetcode-cn.com/problems/two-sum/solution/er-cha-shu-de-zui-xiao-shen-du-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

感想

参考104题,层次遍历迭代做了一次

执行用时 :2 ms, 在所有 Java 提交中击败了17.00%的用户

内存消耗 :36.8 MB, 在所有 Java 提交中击败了84.54%的用户

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int minDepth(TreeNode root) {
        int res = 0;
        if(root==null) return res;
        LinkedList<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        res++;
        TreeNode nextFirst = null;
        TreeNode temp = null;
        while(!queue.isEmpty()){
            temp = queue.poll();
            if(temp==nextFirst) {
                nextFirst=null;
                res++;
            }
            if(temp!=null){
                if(temp.left==null && temp.right==null) return res;
                queue.add(temp.left);
                if(nextFirst==null && temp.left!=null) nextFirst = temp.left;
                queue.add(temp.right);
                if(nextFirst==null && temp.right!=null) nextFirst = temp.right; 
            }
        }
        return res;
    }
}

然后试了一下递归:

执行用时 :1 ms, 在所有 Java 提交中击败了98.07%的用户

内存消耗 :36.6 MB, 在所有 Java 提交中击败了92.70%的用户

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        } else if(root.left==null&&root.right==null){
            return 1;
        } else if(root.left==null){
            return minDepth(root.right)+1;
        } else if(root.right==null){
            return minDepth(root.left)+1;
        } else {
            return Math.min(minDepth(root.left), minDepth(root.right)) + 1;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值