题目链接
https://codeforces.com/problemset/problem/698/A
题目大意
(翻译来自luogu)
解题思路
假设Vasya每天都可以去[休息,比赛,健身],我们分别用数字[0,1,2]表示这三个项目,很容易就可以构建起问题的模型。
根据输入的样例1:
4
1 3 2 0
由题目给出的限制条件,我们可以得到下面的一个图模型:
比较暴力的作法是枚举上面模型的所有路径,统计每条路径中休息的天数,从中找一个答案最小的即可。
但是仔细观察的话可以发现模型是一个DAG,在DAG上求最优解满足DP求解的两个特征:
1.无后效性
2.最优子结构
刚好以天数划分阶段,状态定义如下:
F ( i , 0 ) F(i,0) F(i,0):第i天休息,且第i天结束后Vasya比赛或健身的次数;
F ( i , 1 ) F(i,1) F(i,1):第i天比赛或不比赛,第i天结束后Vasya比赛或健身的次数;
F ( i , 2 ) F(i,2) F(i,2):第i天健身或不健身,第i天结束后Vasya比赛或健身的次数;
由不能连续两天去比赛或健身,设计如下状态转移方程:
F ( i , 0 ) = m a x { F ( i − 1 , 0 ) , F ( i − 1 , 1 ) , F ( i − 1 , 2 ) } F(i,0)=max \{ F(i-1,0),F(i-1,1),F(i-1,2) \} F(i,0)=max{F(i−1,0),F(i−1,1),F(i−1,2)}
F ( i , 1 ) = m a x { F ( i − 1 , 0 ) , F ( i − 1 , 2 ) } + 1 F(i,1)=max \{ F(i-1,0),F(i-1,2) \} +1 F(i,1)=max{F(i−1,0),F(i−1,2)}+1 第i天可以去比赛,前一天休息或健身
F ( i , 2 ) = m a x { F ( i − 1 , 0 ) , F ( i − 1 , 1 ) } + 1 F(i,2)=max \{ F(i-1,0),F(i-1,1) \} +1 F(i,2)=max{F(i−1,0),F(i−1,1)}+1 第i天可以运动,前一天休息或比赛
如果第i天不能比赛或不能健身,继承上一天的次数即可;
F ( i , 1 ) = F ( i − 1 , 1 ) F(i,1)=F(i-1,1) F(i,1)=F(i−1,1)
F ( i , 2 ) = F ( i − 1 , 2 ) F(i,2)=F(i-1,2) F(i,2)=F(i−1,2)
最后的答案为: n − m a x { F ( n , 0 ) , F ( n , 1 ) , F ( n , 2 ) } n-max\{F(n,0),F(n,1),F(n,2)\} n−max{F(n,0),F(n,1),F(n,2)}
参考代码如下:
#include <iostream>
using namespace std;
const int MAXN=105;
int dp[MAXN][3];
int main(){
int n,t;
bool f1,f2;
cin>>n;
for(int i=1;i<=n;i++){
cin>>t;
f1=t&1;
f2=t&2;
dp[i][0]=max(dp[i-1][1],dp[i-1][2]);
dp[i][1]=dp[i-1][1];
dp[i][2]=dp[i-1][2];
if(f1) dp[i][1]=max(dp[i-1][0],dp[i-1][2])+1;
if(f2) dp[i][2]=max(dp[i-1][0],dp[i-1][1])+1;
}
cout<<n-max( max(dp[n][0],dp[n][1]) , dp[n][2] );
return 0;
}
总结
像这种需要 枚举所有情况的组合的题目,可以先尝试用搜索的思路求解,根据题意了先设计图模型,设计图模型时应当去除掉题目中的限制条件,这样方便设计搜索状态和DP状态。
然后仔细观察图模型是否为DAG,是的话可以尝试使用DP求解。