kmp算法

kmp算法是一种改进的字符串匹配算法,由D.E.Knuth与V.R.Pratt和J.H.Morris同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。KMP算法的关键是根据给定的模式串W1,m,定义一个next函数。next函数包含了模式串本身局部匹配的信息。

 

kmp算法-学习介绍    严老的《数据结构》79-84页讲了基本的匹配方法,这是基础。先把这个搞懂了。

  80页在讲KMP算法的开始先举了个例子,让我们对KMP的基本思想有了最初的认识。目的在于指出“由此,在整个匹配的过程中,i指针没有回溯,”。

详细算法:

一般的KMP算法

  现在讨论一般情况。

  假设 主串:s: ‘s(1) s(2) s(3) ……s(n)’ ; 模式串 :p: ‘p(1) p(2) p(3)…..p(m)’

  把课本上的这一段看完后,继续

  现在我们假设 主串第i个字符与模式串的第j(j<=m)个字符‘失配’后,主串第i个字符与模式串的第k(k<j)个字符继续比较

  此时,s(i)≠p(j), 有

  主串: S(1)…… s(i-j+1)…… s(i-1) s(i) ………….

  || (相配) || ≠(失配)

  匹配串: P(1) ........... p(j-1) p(j)

  由此,我们得到关系式

  ‘p(1) p(2) p(3)…..p(j-1)’ = ’ s(i-j+1)……s(i-1)’

  由于s(i)≠p(j),接下来s(i)将与p(k)继续比较,则模式串中的前(k-1)个字符的子串必须满足下列关系式,并且不可能存在 k’>k 满足下列关系式:(k<j),

  ‘p(1) p(2) p(3)…..p(k-1)’ = ’ s(i-k+1)s(i-k+2)……s(i-1)’

  即:

  主串: S(1)……s(i-k +1) s(i-k +2) ……s(i-1) s(i) ………….

  || (相配) || || ?(有待比较)

  匹配串: P(1) p(2) ……..... p(k-1) p(k)

  现在我们把前面总结的关系综合一下

  有:

  S(1)…s(i-j +1)… s(i-k +1) s(i-k +2) …… s(i-1) s(i) ……

  || (相配) || || || ≠(失配)

  P(1) ……p(j-k+1) p(j-k+2) …...... p(j-1) p(j)

  || (相配) || || ?(有待比较)

  P(1) p(2) ……...... p(k-1) p(k)

  由上,我们得到关系:

  'p(1) p(2) p(3)…..p(k-1)’ = ' p(j-k+1)p(j-k+2)……p(j-1)’

  接下来看“反之,若模式串中存在满足式(4-4)。。。。。。。”这一段。看完这一段,如果下面的看不懂就不要看了。直接去看那个next函数的源程序。(伪代码)

  K 是和next有关系的,不过在最初看的时候,你不要太追究k到底是多少,至于next值是怎么求出来的,我教你怎么学会。

  课本83页不是有个例子吗?就是 图4.6

  你照着源程序,看着那个例子慢慢的推出它来。看看你做的是不是和课本上正确的next值一样。

  在理解上面代码的基础上,建议自己寻找一些KMP算法的练习,也可以自己写两个较为简单的字符串进行人脑模拟这种方法的练习,以加深对算法的理解。

KMP算法的优化

  KMP算法是可以被进一步优化的。

  我们以一个例子来说明。譬如我们给的P字符串是“abcdaabcab”,经过KMP算法,应当得到“特征向量”如下表所示:

  

下标i0123456789
p(i)abcdaabcab
next[i]-1000011231
 但是,如果此时发现p(i) == p(k),那么应当将相应的next[i]的值更改为next[k]的值。经过优化后可以得到下面的表格:

  

下标i0123456789
p(i)abcdaabcab
next[i]-1000011231
优化的next[i]-1000-110030
 附:

  KMP算法查找串S中含串P的个数count

  #include <iostream>

  #include <stdlib.h>

  #include <vector>

  using namespace std;

  inline void NEXT(const string& T,vector<int>& next)

  {

  //按模式串生成vector,next(T.size())

  next[0]=-1;

  for(int i=1;i<T.size();i++ ){

  int j=next[i-1];

  while(T[i]!=T[j+1]&& j>=0 )

  j=next[j] ; //递推计算

  if(T[i]==T[j+1])next[i]=j+1;

  else next[i]=0; //

  }

  }

  inline string::size_type COUNT_KMP(const string& S,

  const string& T)

  {

  //利用模式串T的next函数求T在主串S中的个数count的KMP算法

  //其中T非空,

  vector<int> next(T.size());

  NEXT(T,next);

  string::size_type index,count=0;

  for(index=0;index<S.size();++index){

  int pos=0;

  string::size_type iter=index;

  while(pos<T.size() && iter<S.size()){

  if(S[iter]==T[pos]){

  ++iter;++pos;

  }

  else{

  if(pos==0)++iter;

  else pos=next[pos-1]+1;

  }

  }//while end

  if(pos==T.size()&&(iter-index)==T.size())++count;

  } //for end

  return count;

  }

  int main(int argc, char *argv[])

  {

  string S="abaabcacabaabcacabaabcacabaabcacabaabcac";

  string T="ab";

  string::size_type count=COUNT_KMP(S,T);

  cout<<count<<endl;

  system("PAUSE");

  return 0;

  }

  补上个Pascal的KMP算法源码

  PROGRAM Impl_KMP;

  USES

  CRT;

  CONST

  MAX_STRLEN = 255;

  VAR

  next : array [ 1 .. MAX_STRLEN ] of integer;

  str_s, str_t : string;

  int_i : integer;

  Procedure get_nexst( t : string );

  Var

  j, k : integer;

  Begin

  j := 1; k := 0;

  while j < Length(t) do

  begin

  if ( k = 0 ) or ( t[j] = t[k] ) then

  begin

  j := j + 1; k := k + 1;

  next[j] := k;

  end

  else k := next[k];

  end;

  End;

  Function index( s : string; t : string ) : integer;

  Var

  i, j : integer;

  Begin

  get_next(t);

  index := 0;

  i := 1; j := 1;

  while ( i <= Length(s) ) and ( j <= Length(t) ) do

  begin

  if ( j = 0 ) or ( s[i]= t[j] ) then

  begin

  i := i + 1; j := j + 1;

  end

  else j := next[j];

  if j > Length(t) then index := i - Length(t);

  end;

  End;

  BEGIN

  ClrScr;{清屏,可不要}

  Write(‘s = ’);

  Readln(str_s);

  Write(‘t = ’);

  Readln(str_t);

  int_i := index( str_s, str_t );

  if int_i <> 0 then

  begin

  Writeln( 'Found' , str_t,' in ', str_s, 'at ', int_i,' .' );

  end

  else

  Writeln( 'Cannot find ', str_t,' in' , str_s, '. ');

  END.

  index函数用于模式匹配,t是模式串,s是原串。返回模式串的位置,找不到则返回0

  

基本思想

  假设在模式匹配的进程中,执行T[i]和W[j]的匹配检查。若T[i]=W[j],则继续检查T[i+1]和W[j+1]是否匹配。若T[i]<>W[j],则分成两种情况:若j=1,则模式串右移一位,检查T[i+1]和W[1]是否匹配;若1<j<=m,则模式串右移j-next(j)位,检查T[i]和W[next(j)]是否匹配。重复此过程直到j=m或i=n结束。

  文献中,朱洪对KMP算法作了修改,他修改了KMP算法中的next函数,即求next函数时不但要求W[1,next(j)-1]=W[j-(next(j)-1),j-1],而且要求W[next(j)]<>W[j],他记修改后的next函数为newnext。显然在模式串字符重复高的情况下,朱洪的KMP算法比KMP算法更加有效。

  以下给出朱洪的改进KMP算法和next函数和newnext函数的计算算法。

  算法1.1:KMP串匹配算法

  输入: 正文串j和模式串W[1,m]

  输出: 匹配结果match[1,n]

  procedure KMP

  begin

  i=1

  j=1

  while i<=n do

  while j<>0 and W[j]<>T[i] do

  j=newnext[j]

  endwhile

  if j=m

  return “success”

  else

  j++

  i++

  endif

  endwhile

  return “failure”

  end

  算法1.2: next函数和newnext函数的计算算法

  输入: 模式串W[1,m]

  输出: next[1,m+1]和newnext[1,m]

  function NEXT

  begin

  next[1]=newnext[1]=0

  j=2

  while j<=m do

  i=next[j-1]

  while i<>0 and W[i]<>W[j-1]) do

  i=next[i]

  endwhile

  next[j]=i+1

  j=j+1

  endwhile

  end

  function NEWNEXT

  begin

  newnext(1)=0

  j=2

  while j<=m do

  i=next(j)

  if i=0 or W[j]<>W[i+1]

  newnext[j]=i

  else

  newnext[j]=newnext[i]

  endif

  j++

  endwhile

  end

  朱洪证明了算法1的时间复杂度为O(n),算法2的时间复杂度为O(m)。

  下面是更加简洁的算法:

  void GetNext(char T[ ],int next[ ])

  {

  next[1]=0;

  j=1;k=0;

  while(j<T[0])

  if ((k==0)||(T[j]==T[k])

  { j++;

  k++;

  next[j]=k;

  }

  else k=next[k];

  }

BM算法

  BM算法和KMP算法的差别是对模式串的扫描方式自左至右变成自右至左。另一个差别是考虑正文中可能出现的字符在模式中的位置。这样做的好处是当正文中出现模式中没有的字符时就可以将模式大幅度滑过正文。

  BM算法的关键是根据给定的模式W[1,m],,定义一个函数d: x->{1,2,…,m} ,这里x∈∑。函数d给出了正文中可能出现的字符在模式中的位置。

  函数d的定义如下:对每个x∈∑

基本思想

  假设在执行正文中自位置i起“返前”的一段与模式的自右至左的匹配检查中,一旦发现不匹配(不管在什么位置),则去执行由Wm与ti+d(x)起始的自右至左的匹配检查,这里x是字符t。。它的效果相当于把模式向右滑过d(ti)一段距离。显然,若ti不在模式中出现或仅仅在模式末端出现,则模式向右滑过的最大的一段距离m。图1.1示出了执行BM算法时的各种情况。实线连接发现不匹配以后要进行比较的正文和模式中的字母,虚线连接BM算法在模式向右滑后正文和模式中应对齐的字母,星号表示正文中的一个字母。

  图1.1:执行BM算法时的各种情况

  BM算法由算法1.3给出,函数d的算法由算法1.4给出。计算函数d的时耗显然是Θ(m)。BM算法的最坏情况时耗是Θ(mn)。但由于在实用中这种情况极少出现,因此BM算法仍广泛使用。

  算法1.3:BM串匹配算法

  输入: 正文串W[1,m]和模式串T[1,n]

  输出: 匹配结果match[1,n]

  procedure BM

  begin

  i=m

  Repeat

  j=m

  k=i

  while(j>0)and(w[j]=t[k]) do

  j=j-1

  k=k-1

  endwhile

  i=i+d[t[i]]

  Until (j=0)or(i>n)

  If j=0 return “SUCCESS”

  else return “FAILURE”

  endif

  end

  算法1.4: d函数计算法:

  function d:integer;

  begin

  for x∈∑ do d(x)=m

  for j=m-1 downto 1 do

  if d(w[j])=m d(w[j]):=m-j

  endfor

  end

  xi+1=ord(ti+1)dm-1+ord(ti+2)dm-2+…+ord(ti+m)

  =(xi-ord(ti)dm-1).d+ord(ti+m)

  因此有 h(xi+1)=((h(xi)-x·ord(ti))·d+ord(ti+m)mod q ,i=1,2,……,n-m

  这里x是一常数,x=dm-1mod q。 这就是计算每一长度为m的字符段的散列函数值的递推公式。RK串匹配算法由算法1.5给出。

  算法1.5:RK串匹配算法

  program RK;

  begin

  {计算x,x:=d↑(m-1) mod q}

  x=1

  for i=1 to m-1 do x=(32*x)mod q

  {计算模式W的散列函数值}

  s=0

  for i=1 to m do

  s=((s*32)+ord(w[i])) mod q

  {计算正文T的第一个长度为m的字符段的散列函数值}

  t=0

  for i=1 to m do

  t=(t*32+ord(w[i])) mod q

  {如果正文的第一个长度为m的字符段和模式有相同的散列函数值,则进行匹配检查.否则,以及在匹配检查失败情况下,继续计算下一个字符段的散列函数值}

  i=1

  while i<=n-m do

  if s=t

  {进行匹配检查}

  k=1

  j=i

  while (t[j]=w[k]) and (k<=m) do

  j=j+1

  k=k+1

  endwhile

  if i<n-m {计算下一字符段的散列函数值}

  t=((t-x*ord(t[i]))*32+ord(t[i+m])) mod q

  i=i+1

  endif

  endif

  endwhile

  return “FAILURE”

  end

  显然,如果不计执行匹配检查的时间,则RK算法的剩余部分执行时间是Θ(m+n)。不过,如果计及执行匹配检查的时间,则在理论上,RK算法需要时耗Θ(mn)。但是,我们总可设法取q适当大,使得mod函数在计算机中仍可执行而冲突(即不同的字符串具有相同的散列值)又极小可能发生,而使算法的实际执行时间只需Θ(m+n)。

 

 

模式匹配的KMP算法详解

这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KMP算法。大概学过信息学的都知道,是个比较难理解的算法,今天特把它搞个彻彻底底明明白白。

注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法:

 


int Index(String S,String T,int pos)//参考《数据结构》中的程序  
{  
         i=pos;j=1;//这里的串的第1个元素下标是1  
         while(i<=S.Length && j<=T.Length)  
         {  
                   if(S[i]==T[j]){++i;++j;}  
                   else{i=i-j+2;j=1;}//**************(1)  
         }  
         if(j>T.Length) return i-T.Length;//匹配成功  
          else return 0;  

int Index(String S,String T,int pos)//参考《数据结构》中的程序
{
         i=pos;j=1;//这里的串的第1个元素下标是1
         while(i<=S.Length && j<=T.Length)
         {
                   if(S[i]==T[j]){++i;++j;}
                   else{i=i-j+2;j=1;}//**************(1)
         }
         if(j>T.Length) return i-T.Length;//匹配成功
          else return 0;
}
 

匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?回溯,没错,注意到(1)句,为什么要回溯,看下面的例子:

S:aaaaabababcaaa  T:ababc

aaaaabababcaaa

ababc.(.表示前一个已经失配)

回溯的结果就是

aaaaabababcaaa

     a.(babc)
如果不回溯就是

aaaaabababcaaa

        aba.bc

这样就漏了一个可能匹配成功的情况

aaaaabababcaaa

      ababc

为什么会发生这样的情况?这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。如果T为abcdef这样的,大没有回溯的必要。

改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。

如果不用回溯,那T串下一个位置从哪里开始呢?

还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样:

...ababd...

   ababc

   ->ababc

这样i不用回溯,j跳到前2个位置,继续匹配的过程,这就是KMP算法所在。这个当T[j]失配后,j应该往前跳的值就是j的next值,它是由T串本身固有决定的,与S串无关。

《数据结构》上给了next值的定义:

next[j]=0如果j=1

next[j]={Max{k|1<k<j且'p1...pk-1'='pj-k+1...pj-1'

next[j]=1   其它情况

我当初看到这个头就晕了,其实它就是描述的我前面表述的情况,关于next[1]=0是规定的,这样规定可以使程序简单一些,如果非要定为其它的值只要不和后面的值冲突也是可以的;而那个Max是什么意思,举个例子:

T:aaab

...aaaab...

   aaab

  ->aaab

   ->aaab

->aaab

像这样的T,前面自身部分匹配的部分不止两个,那应该往前跳到第几个呢?最近的一个,也就是说尽可能的向右滑移最短的长度。

OK,了解到这里,就看清了KMP的大部分内容,然后关键的问题是如何求next值?先不管它,先看如何用它来进行匹配操作,也就是说先假设已经有了next值。

将最前面的程序改写成:

int Index_KMP(String S,String T,int pos)  
{  
  i=pos;j=1;//这里的串的第1个元素下标是1  
  while(i<=S.Length && j<=T.Length)  
  {  
    if(j==0 || S[i]==T[j]){++i;++j;} //注意到这里的j==0,和++j的作用就知道为什么规定next[1]=0的好处了  
    else j=next[j];//i不变(不回溯),j跳动  
  }  
  if(j>T.Length) return i-T.Length;//匹配成功  
  else return 0;  

int Index_KMP(String S,String T,int pos)
{
  i=pos;j=1;//这里的串的第1个元素下标是1
  while(i<=S.Length && j<=T.Length)
  {
    if(j==0 || S[i]==T[j]){++i;++j;} //注意到这里的j==0,和++j的作用就知道为什么规定next[1]=0的好处了
    else j=next[j];//i不变(不回溯),j跳动
  }
  if(j>T.Length) return i-T.Length;//匹配成功
  else return 0;
}

OK,是不是非常简单?还有更简单的,求next值,这也是整个算法成功的关键,从next值的定义来求太恐怖了,怎么求?前面说过了,next值表达的就是T串的自身部分匹配的性质,那么,我只要将T串和T串自身来一次匹配就可以求出来了,这里的匹配过程不是从头一个一个匹配,而是从T[1]和T[2]开始匹配,给出算法如下:

int Index_KMP(String S,String T,int pos)  
{  
    i=pos;j=1;//这里的串的第1个元素下标是1  
    while(i<=S.Length && j<=T.Length)  
    {  
    if(j==0 || S[i]==T[j]){++i;++j;} //注意到这里的j==0,和++j的作用就知道为什么规定next[1]=0的好处了  
    else j=next[j];//i不变(不回溯),j跳动  
    }  
    if(j>T.Length) return i-T.Length;//匹配成功  
    else return 0;  

int Index_KMP(String S,String T,int pos)
{
    i=pos;j=1;//这里的串的第1个元素下标是1
    while(i<=S.Length && j<=T.Length)
    {
 if(j==0 || S[i]==T[j]){++i;++j;} //注意到这里的j==0,和++j的作用就知道为什么规定next[1]=0的好处了
 else j=next[j];//i不变(不回溯),j跳动
 }
 if(j>T.Length) return i-T.Length;//匹配成功
 else return 0;
}
 

看这个函数是不是非常像KMP匹配的函数,没错,它就是这么干的!注意到(2)语句逻辑覆盖的时候是T[i]==T[j]以及i前面的、j前面的都匹配的情况下,于是先自增,然后记下来next[i]=j,这样每当i有自增就会求得一个next[i],而j一定会小于等于i,于是对于已经求出来的next,可以继续求后面的next,而next[1]=0是已知,所以整个就这样递推的求出来了,方法非常巧妙。

这样的改进已经是很不错了,但算法还可以改进,注意到下面的匹配情况:

...aaac...

   aaaa.

T串中的'a'和S串中的'c'失配,而'a'的next值指的还是'a',那同样的比较还是会失配,而这样的比较是多余的,如果我事先知道,当T[i]==T[j],那next[i]就设为next[j],在求next值的时候就已经比较了,这样就可以去掉这样的多余的比较。于是稍加改进得到:

void get_nextval(String T,int &next[])  
{  
    i=1;j=0;next[1]=0;  
    while(i<=T.Length)  
    {  
        if(j==0 || T[i]==T[j])  
        {   
            ++i;  
            ++j;  
            if(T[i]!=T[j]) next[i]=j;  
            else next[i]=next[j];//消去多余的可能的比较,next再向前跳  
        }  
        else j=next[j];  
    }  

void get_nextval(String T,int &next[])
{
 i=1;j=0;next[1]=0;
 while(i<=T.Length)
 {
  if(j==0 || T[i]==T[j])
  {
   ++i;
   ++j;
   if(T[i]!=T[j]) next[i]=j;
   else next[i]=next[j];//消去多余的可能的比较,next再向前跳
  }
  else j=next[j];
 }
}
 

匹配算法不变。

到此就完全弄清楚了,以前老觉得KMP算法好神秘,真不是人想出来的,其实不然,它只不过是对原有的算法进行了改进。可见基础的经典的东西还是很重要,你有本事‘废’了经典,就创造了进步。

 

 

☆─────────────────────────传说中的分隔符───────────────────────────────────────☆

来源2:http://blog.chinaunix.net/u2/76292/showart_1661980.html  

kmp算法

设有主串s和子串t,子串t定位是指在主串s中找到一个与子串t相等的子串。通常把主串s称为目标串,把子串t称为模式串,因此定位也称作模式匹配。模式匹配成功是指在目标串s中找到一个模式串t。

传统的字符串模式匹配算法(也就是BF算法)就是对于主串和模式串双双自左向右,一个一个字符比较,如果不匹配,主串和模式串的位置指针都要回溯。这样的算法时间复杂度为O(n*m),其中n和m分别为串s和串t的长度。

KMP 算法是由Knuth,Morris和Pratt等人共同提出的,所以成为Knuth-Morris-Pratt算法,简称KMP算法。KMP算法是字符串模式匹配中的经典算法。和BF算法相比,KMP算法的不同点是匹配过程中,主串的位置指针不会回溯,这样的结果使得算法时间复杂度只为O(n+m)。下面说说KMP算法的原理。

假设我们有个模式串为“abdabcde”存于数组t,我们要求的就是模式串的next值,见下表所示:

 

i
 0
 1
 2
 3
 4
 5
 6
 7
 
t[i]
 a
 b
 d
 a
 b
 c
 d
 e
 
next[i]
 -1
 0
 0
 0
 1
 2
 0
 0
 

求模式t的next[i](称为失效函数)的公式如下:

 

 


next[i]=

 

 

( 上面的公式中非t字母和数字组成的为数组下标)

应该如何理解next数组呢?在匹配过程中,如果出现不匹配的情况(当前模式串不匹配字符假定为t[i]),它所对应的next[i]的数值为接下来要匹配的模式串的字符的索引;也就是说,出现不匹配的情况时,模式串的索引指针要回溯到中next[i]所对应的位置,而主串的索引指针保持不变。

特别的,next数组中的next[0]和next[1]的取值是固定的,为了标识出首字母,需要假定next[0]为-1(取为-1是考虑到C语言中的数组索引以0开始)。在实现的时候,要实现公式中情况的处理需要些技巧,下面给出具体的实现:

#include <stdio.h>  
#include <stdlib.h>   
 
typedef struct QString{  
    char *  cs;  
    int  len;  
}String;  
 
void GetNext(String s, int next [])  
{  
    int len  =  s.len;  
    int i = 0 ;  
    int k = - 1 ;  
    next[0] = - 1 ;  
    while (i < len - 1 ){  
        if (k ==- 1 || s.cs[i] == s.cs[k]){  
            i ++ ;  
            k ++ ;  
            next[i] = k;  
        }else{  
            k = next[k];  
        }  
    }  
}  
 
 
int KMPIndex(String s, String m)  
{  
    int next[m.len], i = 0, j = 0 ;  
    int k;  
    GetNext(m, next);  
    while (i < s.len && j < m.len){  
        if (j == - 1 || s.cs[i] == m.cs[j]){  
            i ++ ;  
            j ++ ;  
        }else{  
            j = next[j];  
        }  
    }  
    if(j >= m.len) return i - m.len;  
    else   return -1 ;  

#include <stdio.h>
#include <stdlib.h>

typedef struct QString{
 char *  cs;
    int  len;
}String;

void GetNext(String s, int next [])
{
 int len  =  s.len;
    int i = 0 ;
    int k = - 1 ;
    next[0] = - 1 ;
    while (i < len - 1 ){
  if (k ==- 1 || s.cs[i] == s.cs[k]){
   i ++ ;
            k ++ ;
            next[i] = k;
        }else{
            k = next[k];
        }
    }
}


int KMPIndex(String s, String m)
{
 int next[m.len], i = 0, j = 0 ;
    int k;
    GetNext(m, next);
    while (i < s.len && j < m.len){
  if (j == - 1 || s.cs[i] == m.cs[j]){
   i ++ ;
            j ++ ;
        }else{
            j = next[j];
        }
    }
 if(j >= m.len) return i - m.len;
    else   return -1 ;
}
 

KMP 算法也有需要改进的地方。对于模式串“aaaadd”在匹配时(假定被匹配串为“aaadddd”),可以看到,在匹配到索引3时,主串字符为“d”,模式串字符为“a”,如果按照上面的做法,这时模式串只会回溯一个索引,由于仍不匹配,模式串还会回溯一个索引,直到索引位置到了首字符,主串的索引指针才会前进一位,这样就会浪费一些不必要的比较时间。出现这种情况的原因是模式串中位置i的字符与next[i]对应的字符相同,需要修正next[i]为next[i]对应的字符的索引。下面列出“aaaadd”修正的nextval数组的内容:

i
 0
 1
 2
 3
 4
 5
 
t[i]
 a
 a
 a
 a
 d
 d
 
next[i]
 -1
 0
 1
 2
 3
 0
 
nextval[i]
 -1
 -1
 -1
 -1
 0
 0
 

修正函数如下:

void GetNextval(String s, int nextval[])  
{  
    int len = s.len, i = 0, k = -1 ;  
    nextval[0] = -1 ;  
    while (i  < len - 1){  
        if (k == - 1 || s.cs[i] == s.cs[k]){  
            i ++ ;  
            k ++ ;  
            if (s.cs[i] != s.cs[k]){  
                nextval[i] = k;  
            }else 
                nextval[i] = nextval[k];              
        }else{  
            k = nextval[k];  
        }  
    }  
}  

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/guocai_yao/archive/2009/04/18/4089172.aspx

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值