太爱这个dp解法了 很好懂欸家人们!二维数组...牛哇牛哇
题目描述
给你一个整数数组 nums
,返回 数组 answer
,其中 answer[i]
等于 nums
中除 nums[i]
之外其余各元素的乘积 。
题目数据 保证 数组 nums
之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。
请 不要使用除法,且在 O(n)
时间复杂度内完成此题。
示例 1:
输入: nums = [1,2,3,4] 输出: [24,12,8,6]
示例 2:
输入: nums = [-1,1,0,-3,3] 输出: [0,0,9,0,0]
提示:
2 <= nums.length <= 105
-30 <= nums[i] <= 30
- 保证 数组
nums
之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内
解题思路
1.确定dp数组(dp table)以及下标的含义
定义一个二维数组dp[2][nums.length] 其中第一行表示左边的乘积和 第二行表示右边的乘积和
比如
2.确定递推公式
dp[0][i] = dp[i - 1] * nums[i - 1];
dp[1][i] = dp[i + 1] * nums[i + 1];
3.dp数组如何初始化
dp[0][0] = 1;
dp[1][0] = 1;
4.确定遍历顺序
第一行从左到右遍历
第二行从右到左遍历
5.合并左右乘积
class Solution {
public int[] productExceptSelf(int[] nums) {
int len = nums.length;
int[][] dp = new int[2][len];
dp[0][0] = 1;
dp[1][len-1] = 1;
for(int i = 1;i<len;i++){
dp[0][i] = dp[0][i-1]*nums[i-1];
}
for(int i = len-2;i>=0;i--){
dp[1][i] = dp[1][i+1]*nums[i+1];
}
int[] res = new int[len];
for(int i = 0;i<len;i++){
res[i] = dp[0][i]*dp[1][i];
}
return res;
}
}