基于在线优化的快速模型预测控制 (Fast-MPC) 快速模型预测控制类使用定制的不可行启动牛顿求解器利用模型

文章标题:基于在线优化的快速模型预测控制(Fast-MPC)的优化策略

一、引言

随着现代工业自动化和智能控制的快速发展,模型预测控制(MPC)已经成为一种重要的控制策略。基于在线优化的快速模型预测控制(Fast-MPC)技术,以其高效的计算能力和良好的控制性能,正逐渐成为研究的热点。本文将探讨如何利用定制的不可行启动牛顿求解器,以及MPC的结构特性进行求解,从而实现快速的在线优化。

二、Fast-MPC概述

Fast-MPC是一种实时优化控制策略,它通过对未来状态进行预测,并根据预测结果进行优化计算,得出最优控制策略。这种策略可以在动态变化时快速响应,提供实时优化控制。

三、不可行启动牛顿求解器的应用

在Fast-MPC的实现中,我们采用了定制的不可行启动牛顿求解器。这种求解器可以在面对非线性、复杂、高阶的优化问题时,提供快速且准确的解决方案。通过将MPC的优化问题转化为求解器可以处理的数学形式,我们可以利用求解器进行高效的在线优化。

四、利用MPC的结构进行求解

在传统方法中,通常将一个MPC问题求解后,将第一个控制步骤应用于,然后以下一个综合状态作为下一次MPC迭代的初始条件。而我们的Fast-MPC策略则利用MPC的结构特性进行求解。我们不仅考虑了当前的状态,还预见了未来的状态,从而在每一次迭代中都进行了全局的优化。

五、时间不变动力学的应用

我们的当前实现是在时间不变的动力学(相等约束)上进行的。这种动力学模型简化了问题求解的复杂性,使我们能够更快速地进行在线优化。我们通过利用动力学的特性,避免了复杂的迭代计算,从而提高了计算速度。

六、结论

基于在线优化的Fast-MPC是一种有效的控制策略,它通过定制的不可行启动牛顿求解器和MPC的结构特性进行求解,实现了快速的在线优化。在时间不变的动力学模型下,我们的实现方法能够进一步提高计算速度,为工业自动化和智能控制提供了强有力的支持。

随着科技的不断发展,我们期待Fast-MPC在更多领域的应用和优化,为未来的工业控制和自动化技术提供更多的可能性。
基于在线优化的快速模型预测控制 (Fast-MPC) 快速模型预测控制类使用定制的不可行启动牛顿求解器利用模型预测控制的结构进行求解。
在传统方法中,求解一个 MPC 问题并将第一个控制步骤应用于,下一个综合状态构成下一次 MPC 迭代的初始条件。
这里利用 MPC 的结构来加速结果。
当前的实现是在时间不变的动力学(相等约束)上进行的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值