小明和朋友们一起去郊外植树,他们带了一些在自己实验室精心研究出的小树苗。
小明和朋友们一共有 n 个人,他们经过精心挑选,在一块空地上每个人挑选了一个适合植树的位置,总共 n 个。他们准备把自己带的树苗都植下去。
然而,他们遇到了一个困难:有的树苗比较大,而有的位置挨太近,导致两棵树植下去后会撞在一起。
他们将树看成一个圆,圆心在他们找的位置上。如果两棵树对应的圆相交,这两棵树就不适合同时植下(相切不受影响),称为两棵树冲突。
小明和朋友们决定先合计合计,只将其中的一部分树植下去,保证没有互相冲突的树。他们同时希望这些树所能覆盖的面积和(圆面积和)最大。
输入格式
输入的第一行包含一个整数 n ,表示人数,即准备植树的位置数。
接下来 n 行,每行三个整数 x, y, r,表示一棵树在空地上的横、纵坐标和半径。
输出格式
输出一行包含一个整数,表示在不冲突下可以植树的面积和。由于每棵树的面积都是圆周率的整数倍,请输出答案除以圆周率后的值(应当是一个整数)。
样例输入
6
1 1 2
1 4 2
1 7 2
4 1 2
4 4 2
4 7 2
样例输出
12
评测用例规模与约定
对于 30% 的评测用例,1 <= n <= 10;
对于 60% 的评测用例,1 <= n <= 20;
对于所有评测用例,1 <= n <= 30,0 <= x, y <= 1000,1 <= r <= 1000。
题目意思就是求不相邻区间的最大面积,最容易想到的办法就是暴力求解,暴力的话时间复杂度稍微有点大容易超时,所以用来深度优先搜索,进行剪枝从而来优化时间复杂度
具体算法思想为:采用一个标记数组,标记两个图形直接是否存在交叉,然后进行递归遍历,注意因为是判断两个图形之间的关系,所以将vis[1] = false;
代码如下:
#include<iostream>
#include<cmath>
using namespace std;
int x[100],y[100],r[100],n,maxn;
bool vis[100],sign[100][100];
void dfs(int step){
if (step > n) {
int sum = 0;
for (int i = 1; i <= n; i++) {
if (vis[i]) {
sum += (r[i] * r[i]);
}
}
maxn = max(sum, maxn);
return;
}
// 剪枝
vis[step] = false;
dfs(step + 1);
for (int i = 1; i < step; i++) {
if (vis[i] && !sign[i][step]) {
return;
}
}
vis[step] = true;
dfs(step + 1);
}
int main() {
cin>>n;
// 输入数据
for(int i=1;i<=n;i++){
cin>>x[i]>>y[i]>>r[i];
}
// 数据序列化
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++)
{
bool result=((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]) > (r[i] + r[j])*(r[i] + r[j]) );
sign[i][j]=result;
sign[j][i]=result;
}
}
dfs(1);
cout<<maxn<<endl;
}
最后思考一个问题,如果题目要求交叉图形的最大交叉面积,结果输出这两个图形对应的属性,要怎么做,大家思考以下,欢迎下方评论