【Bzoj4326】运输计划

5 篇文章 0 订阅
3 篇文章 0 订阅

4326: NOIP2015 运输计划

Time Limit: 30 Sec   Memory Limit: 128 MB
Submit: 1091   Solved: 696
[ Submit][ Status][ Discuss]

Description

公元 2044 年,人类进入了宇宙纪元。L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球。小 P 掌管一家物流公司, 该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 ui 号星球沿最快的宇航路径飞行到 vi 号星球去。显然,飞船驶过一条航道是需要时间的,对于航道 j,任意飞船驶过它所花费的时间为 tj,并且任意两艘飞船之间不会产生任何干扰。为了鼓励科技创新, L 国国王同意小 P 的物流公司参与 L 国的航道建设,即允许小P 把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。在虫洞的建设完成前小 P 的物流公司就预接了 m 个运输计划。在虫洞建设完成后,这 m 个运输计划会同时开始,所有飞船一起出发。当这 m 个运输计划都完成时,小 P 的物流公司的阶段性工作就完成了。如果小 P 可以自由选择将哪一条航道改造成虫洞, 试求出小 P 的物流公司完成阶段性工作所需要的最短时间是多少?

Input

第一行包括两个正整数 n,m,表示 L 国中星球的数量及小 P 公司预接的运输计划的数量,星球从 1 到 n 编号。接下来 n−1 行描述航道的建设情况,其中第 i 行包含三个整数 ai,bi 和 ti,表示第 i 条双向航道修建在 ai 与 bi 两个星球之间,任意飞船驶过它所花费的时间为 ti。数据保证 1≤ai,bi≤n 且 0≤ti≤1000。接下来 m 行描述运输计划的情况,其中第 j 行包含两个正整数 uj 和 vj,表示第 j 个运输计划是从 uj 号星球飞往 vj号星球。数据保证 1≤ui,vi≤n

Output

输出文件只包含一个整数,表示小 P 的物流公司完成阶段性工作所需要的最短时间。

Sample Input

6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5

Sample Output

11

HINT


将第 1 条航道改造成虫洞: 则三个计划耗时分别为:11,12,11,故需要花费的时间为 12。

将第 2 条航道改造成虫洞: 则三个计划耗时分别为:7,15,11,故需要花费的时间为 15。

将第 3 条航道改造成虫洞: 则三个计划耗时分别为:4,8,11,故需要花费的时间为 11。

将第 4 条航道改造成虫洞: 则三个计划耗时分别为:11,15,5,故需要花费的时间为 15。

将第 5 条航道改造成虫洞: 则三个计划耗时分别为:11,10,6,故需要花费的时间为 11。

故将第 3 条或第 5 条航道改造成虫洞均可使得完成阶段性工作的耗时最短,需要花费的时间为 11。


NOIP2015的Day2 T3,还是有一定难度的,而且编写上虽然算不上是码农题,但是对模板的掌握还是要很熟练的。算法的话是用的倍增+二分答案(带特技?),然后会打的话树剖应该也可以玩。我的思路是这样子的:
首先那一大堆数组的意思:head,to,next,val这个存边。grand和depth是LCA时所用到的深度和祖先。done的话也是LCA中用,kth是第i个数字的值,dis记录到根的距离(便于差分),tmp记录某点出现的次数,而prev记录一个点前驱边的权值。Que结构体记录对于每组询问的两端,距离,与lca...呼...就这样。
做法的话首先预处理LCA、距离等之后把每一组询问记作一条边,记录下此边的距离(可以用dis[u]+dis[v]-2*dis[lca(u,v)]求出)。之后开始二分答案(边界设定的话建议每加一条边tot+=v[i],二分右边界为tot)。而对于每一次二分的值(这里二分时间(也可以叫价值吧)),把所有时间大于此答案的边记录(即cnt++,记录下左右端点。)然后把左右端点的路径跑一边(具体就是维护tmp数组)。之后开始判断,如果有一条边的tmp == cnt,说明在所有超界的方案中都经过了此边。这时候,如果此边的价值被减去后所有的答案都不会超界,那么这个答案是可用的,开始往左边二分。如果不行的话就往右边二分。最后就可以得出答案。
#include <cstdio>
#include <algorithm>
#include <cstring>

using namespace std;

const int maxx = 300000 + 100;
const int maxm = 300000 + 50;

int head[maxx],next[maxx<<1],to[maxx<<1],val[maxx<<1];
int grand[maxx][20+2],depth[maxx],tmp[maxx],dis[maxx],prev[maxx],kth[maxx];
bool done[maxx];
int n,m,root,x,y,z,num,T,size,tot,ans;

template<class T> T chkmax(const T &a,const T &b) {return  a>b? a : b;}

struct Que{
	int s;
	int t;
	int Dis;
	int lca;
}Q[maxm];

inline int read(){
	int x=0,f=1;char c=getchar();
	while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
	while(c>='0'&&c<='9') {x=x*10+c-'0'; c=getchar();}
	return x*f;
}

void Add(int x,int y,int z){
	next[++num] = head[x];
	to[num] = y;
	val[num] = z;
	head[x] = num;
}

void Dfs(int x){
	kth[++size] = x;
	done[x] = true;
	for(int i=1;i<=20;i++){
		if(depth[x] < (1<<i)) break;
		grand[x][i] = grand[grand[x][i-1]][i-1];
	}
	for(int i=head[x];i;i=next[i]){
		int now = to[i];
		if(done[now]) continue;
		grand[now][0] = x;
		depth[now] = depth[x] + 1;
		dis[now] = dis[x] + val[i];
		prev[now] = val[i];
		Dfs(now);
	}
}

int Lca(int x,int y){
	if(depth[x] > depth[y]) x^=y^=x^=y;
	int d = depth[y] - depth[x];
	for(int i=0;i<=20;i++)
		if((1<<i) & d) y = grand[y][i];
	for(int i=20;i>=0;i--){
		if(grand[x][i] != grand[y][i])
			x = grand[x][i],y = grand[y][i];
	}
	return x == y? x : grand[x][0];
}

bool check(int x){
	int cnt=0,dist=0;
	memset(tmp,0,sizeof(tmp));
	for(int i=1;i<=m;i++){
		if(Q[i].Dis > x){
			tmp[Q[i].s]++;tmp[Q[i].t]++;
			tmp[Q[i].lca] -= 2;
			dist=chkmax(dist,Q[i].Dis-x);
			cnt++;
		}
	}
	if(!cnt) return true;
	for(int i=n;i>1;i--) 
		tmp[grand[kth[i]][0]] += tmp[kth[i]];
	for(int i=2;i<=n;i++)
		if(tmp[i]==cnt && prev[i]>=dist)
			return true;
	return false;
}

int work(){
	int l=0,r=tot,Ans,mid;
	while(l<=r){
		mid=(l+r)>>1;
		if(check(mid))
			Ans=mid,r=mid-1;
		else l=mid+1;
	}
	return Ans;
}

int main(){
	n = read();m = read();
	for(int i=1;i<n;i++){
		x=read();y=read();z=read();
		Add(x,y,z);Add(y,x,z);
		tot += z;
	}
	Dfs(1);
	for(int i=1;i<=m;i++){
		x=read();y=read();
		Q[i].s=x;Q[i].t=y;
		Q[i].lca=Lca(x,y);
		Q[i].Dis=dis[x]+dis[y]-((dis[Lca(x,y)])<<1);
	}
	printf("%d\n",work());
	return 0;
}

然后...在Bzoj上是可以A的,但是codevs的话一个点始终过不了,noip官方数据的话也能过。大常数始终不知道优化,希望有神犇能够帮帮我QwQ。




虽然没这么变态...反正就这种感觉...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值