1. 什么是树
树(英语:tree)是一种抽象数据类型(ADT)或是实现这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。它是由n(n>0)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
特点
- 每个节点都只有有限个子节点或无子节点;
- 没有父节点的节点称为根节点;
- 每一个非根节点有且只有一个父节点;
- 除了根节点外,每个子节点可以分为多个不相交的子树;
- 树里面没有环路(cycle)
2. 树的基本概念
-
父节点或父亲节:若一个节点含有子节点,则这个节点称为其子节点的父节点;比如A节点是B节点的父节点。
-
根节点:没有父亲的节点称之为根节点,比如A节点就是这个树的根节点。
-
子节点:一个节点含有的子树的根节点称为该节点的子节点;比如B节点是A节点的子节点。
-
叶子节点或叶节点:没有子节点的节点称之为叶子节点。比如K、O、P都是为叶子节点。
-
兄弟节点:具有相同父节点的节点互称为兄弟节点;比如B和C就是兄弟节点。
-
层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;比如K节点层次是:从根节点数到K是5层
-
深度:对于任意节点n,n的深度为从根到n的唯一路径长,根的深度为0;
-
高度:对于任意节点n,n的高度为从n到一片树叶的最长路径长,所有树叶的高度为0;
-
路径:一个节点到另一个节点所经过的节点顺序就是路径,比如A到K的路径:A->B->D->I->K
-
度:一个节点都多少个子节点,比如A的度是2。
-
权:一个节点存放的数值。
-
森林:由m(m>=0)棵互不相交的树的集合称为森林。
3. 树的种类
-
无序树或自由树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树
-
有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
-
二叉树:每个节点最多含有两个子树的树称为二叉树。
-
完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树
- 满二叉树:所有叶节点都在最底层的完全二叉树;
-
线索二叉树:二叉树添加了直接指向节点的前驱和后继的指针的二叉树称为线索二叉树。
-
平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
-
排序二叉树(二叉查找树):也称二叉搜索树、有序二叉树;
- 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
- 若任意节点的右子树不空,则右子树上所有节点的值均大于或等于它的根节点的值;
- 任意节点的左、右子树也分别为二叉查找树;
-
-
霍夫曼树:带权路径最短的二叉树称为哈夫曼树或最优二叉树。
叶子节点带权路径:叶子节点的权乘以路径
树的带权路径:叶子节点带权路径总和
-
B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多于两个子树。
-
排序二叉树
完全二叉树和满二叉树