文章目录
前言
全文共3719字,预计阅读需要约十分钟,如果配合软件实操练习大约需要三小时。
叶子在学《机器人学》,验证一些公式时难以用MATLAB实现,从B站极速入门了Mathematica,发现这个软件在矩阵计算、求解公式、求解方程、公式推导、公式简化等方面有强大的能力。
本笔记来自B站该视频的学习总结,配合食用更香哦~
这可能是B站最易上手的mathematica入门教程_哔哩哔哩_bilibili
一、基础运算
• 平方根:Sqrt [ ]
• 余弦:Cos [ ]
• 对数:Log [ ]
• 反正切:ArcTan [ ]
• 自然对数:E
• 虚数:I
• 圆周率:Pi
• 化简函数:Simplify[ ] / //Simplify,还可以加上变量范围:Assumptions{ }
• 分解因式函数://Factor / Factor[ ]
• 赋值t=a可以执行最基本的赋值运算,如果想使t回归未被赋值的状态,可以将上式修改成【t=. 】再【shift+enter】重新运行
二、逻辑运算
前提条件:t=2
再根据每一条陈述语句进行判断:
t>1 | | t>2 ——结果:True
t>1 && t>2 ——结果:False
If [t>1 && t>2, 4 , -2 ](成立的话就是4,不成立就是-2) ——结果:-2
三、解方程/微分/积分/微分方程运算
• 解方程:Solve[ ]——Solve[a x^2 + b x + c == 0, x] (注意空格、两个等于号以及要注明变量是x)
• 解方程组——Solve[{a t^2 + m t + c == 0, m^2 - 1 == 0}, {t, m}] (注意把方程组以及变量分别用【{ }】来隔开,方程组以及变量用【,】隔开,解也会用{ }装着再用【,】隔开)
• 求导:D[算式,变量 ]
• 积分:Integrate[算式,变量]
• 级数展开:Series[1/