方波三角波THD理论计算值以及硬件实现电路
THD:谐波失真度
一般而言THD的计算在硬件实现方面,都是直接采集波形,然后在数字域中进行FFT,计算各谐波分量,但是通过计算各谐波分量的问题是,可能忽略掉了高次谐波的影响,导致实际测量偏小。
这里采用计算有效值来实现THD的计算,计算公式如下:
T H D = E 2 − U 1 2 U 1 THD = \frac{\sqrt{E^2-U_1^2}}{U_1} THD=U1E2−U12
其中 E E E为方波或者三角波的有效值, U 1 U_1 U1为方波或三角波基次谐波的有效值
文章目录
理论计算
方 波 T H D = 48.3 % 方波THD=48.3\% 方波THD=48.3%
对于一个峰峰值2Vpp的方波而言,其峰值为1V,方波图如下图所示
对于该方波而言 E = 1 V r m s E=1V_{rms} E=1Vrms
对于这个方波而言,其傅里叶级数展开为(这里只看基波): 4 π V \frac{4}{\pi}V π4V,注意该值是基波的峰值(峰峰值的一半),考虑到基波为正弦波,所以我们就可以得到,对于该方波而言
U 1 = 4 π 2 = 2 2 π V r m s U_1=\frac{4}{\pi\sqrt{2}}=\frac{2\sqrt{2}}{\pi}Vrms U1&#