博弈小总结

巴什博弈:
 一堆n个物品,两个人轮流从这堆物品中取物,每次至少取一个,最多取m个,最后取完者胜。

当 n%(m+1)!=0 时,先手必赢。

威佐夫博弈:
  有2堆物品,一堆m个一堆n个,两个人轮流取,每次可以取一堆中的任意个或者取2堆中的相同个,最后取完者胜。

当(int)[((sqrt(5)+1)/2)* ( n - m ) ] != m 时 ,先手必赢。

尼姆博弈:
 有任意堆物品,每堆物品的个数是任意的,双方轮流从中取物品,每一次只能从一堆物品中取部分或全部物品,最少取一件,取到最后一件物品的人获胜。

把每堆物品数全部异或起来,当得到的值不为0时,先手必赢。

斐波那契博弈:
一堆n个物品,两人轮流取,先手最少取一个,至多 n-1 个,之后每次取的物品数至少为一件,至多不能超过上一次取的物品数的二倍,取走最后一件物品的人获胜。

当n不是斐波那契数时,先手必赢

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭