CSU1005-Binary Search Tree analog-模拟

A: Binary Search Tree analog

Description

Binary Search Tree, abbreviated as BST, is a kind of binary tree maintains the following property:

  1. each node has a Key value, which can be used to compare with each other.
  2. For every node in the tree, every Key value in its left subtree is smaller than its own Key value.
  3. For every node in the tree, every Key value in its right subtree is equal to or larger than its own Key value.

Now we need to analog a BST, we only require one kind of operation: inserting.

First, we have an empty BST. Input is a sequence of numbers. We need to insert them one by one flowing the rules below:

If the inserted value is smaller than the root’s value, insert it to the left subtree.

If the inserted value is larger than or equal to the value of the root’s value, insert it to the right subtree.

After each input, we need to output the preorder, inorder, postorder traversal sequences.

About tree traversal, the following is from Wikipedia:

Depth-first Traversal

To traverse a non-empty binary tree in preorder, perform the following operations recursively at each node, starting with the root node:

  • Visit the root.
  • Traverse the left subtree.
  • Traverse the right subtree.

To traverse a non-empty binary tree in inorder (symmetric), perform the following operations recursively at each node:

  • Traverse the left subtree.
  • Visit the root.
  • Traverse the right subtree.

To traverse a non-empty binary tree in postorder, perform the following operations recursively at each node:

  • Traverse the left subtree.
  • Traverse the right subtree.
  • Visit the root.

Look at the folowing example:

Intput is a sequence of 5 integers: 3 6 9 5 1

After each integer inserted the structure of the tree is illustrated in the flowing:

   3
 /   \
1      6
     /  \
    5     9

Input

The first integer of the input is T, the number of test cases. Each test case has two lines. The first line contain an integer N,(1<=N<=1000), the number of numbers need to be inserted into the BST. The second line contain N integers separated by space, each integer is in the range of [0,230].

Output

Each test case, output must contain three lines: the preorder, inorder and postorder traversal sequence. The numbers in each line should be separated by a single space and you should not output anything at the end of the line! Output a blank line after each case.

Sample Input

1
5
3 6 9 5 1

Sample Output

3 1 6 5 9
1 3 5 6 9
1 5 9 6 3

Hint

用输入序列直接建立一棵以第一个数为根节点的二叉搜索树,然后输出该树的三种DFS遍历序列
直接放代码吧

#include <bits/stdc++.h>
#define N 10100
#define INF 0x3f3f3f3f
#define LL long long
#define mem(a,n) memset(a,n,sizeof(a))
#define fread freopen("in.txt","r",stdin)
#define fwrite freopen("out.txt","w",stdout)
using namespace std;
struct node{
    int val;
    node *left,*right;
    node():val(0),left(nullptr),right(nullptr){}
    node(int n):val(n),left(nullptr),right(nullptr){}
};
void insert(int n,node *root);
void del(node *root);
void PreTra(node *root);
void InTra(node *root);
void PosTra(node *root);
int pre,in,pos;
int main()
{
    ios::sync_with_stdio(false);
    int n,t,temp;
    node *root;
    cin>>t;
    while(t--){
        cin>>n;
        in=pos=pre=0;
        root=new node;
        cin>>root->val;
        for(int i=1;i<n;++i){
            cin>>temp;
            insert(temp,root);
        }
        PreTra(root);cout<<endl;
        InTra(root);cout<<endl;
        PosTra(root);cout<<endl;
        del(root);
        cout<<endl;
    }
    return 0;
}
void insert(int n,node *root)
{
    if(n<root->val){
        if(root->left){
            insert(n,root->left);
        }else{
            root->left=new node;
            root->left->val=n;
        }
    }else{
        if(root->right){
            insert(n,root->right);
        }else{
            root->right=new node;
            root->right->val=n;
        }
    }
}
void del(node *root)
{
    if(root==nullptr){
        return;
    }
    del(root->left);
    del(root->right);
    delete root;
}
void PreTra(node *root)
{
    if(root==nullptr){
        return;
    }if(pre==0){
        cout<<root->val;
        ++pre;
    }else{
        cout<<' '<<root->val;
    }
    PreTra(root->left);
    PreTra(root->right);
}
void InTra(node *root)
{
    if(root==nullptr){
        return;
    }
    InTra(root->left);
    if(in==0){
        cout<<root->val;
        ++in;
    }else{
        cout<<' '<<root->val;
    }
    InTra(root->right);
}
void PosTra(node *root)
{
    if(root==nullptr){
        return;
    }
    PosTra(root->left);
    PosTra(root->right);
    if(pos==0){
        cout<<root->val;
        ++pos;
    }else{
        cout<<' '<<root->val;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值