证明厄米矩阵不同特征值对应特征向量正交
解:
厄米矩阵满足:
U
=
U
†
U = U^{\dagger}
U=U†
设
U
U
U为厄米矩阵,
V
1
,
V
2
V_1,V_2
V1,V2为特征向量,有:
U
V
1
=
λ
1
V
1
U
V
2
=
λ
2
V
2
∴
V
2
†
U
V
1
=
V
2
†
λ
1
V
1
=
λ
1
V
2
†
V
1
,
V
2
†
U
V
1
=
(
U
†
V
2
)
†
V
1
=
(
U
V
2
)
†
V
1
=
λ
2
V
2
†
V
1
∴
λ
1
V
2
†
V
1
=
λ
2
V
2
†
V
1
∵
λ
1
≠
λ
2
∴
V
2
†
V
1
=
0
U V_1 = \lambda_1 V_1 \\ U V_2 = \lambda_2 V_2 \\ \therefore V_2^{\dagger}U V_1 = V_2^{\dagger} \lambda_1 V_1 = \lambda_1 V_2^{\dagger} V_1, \\ V_2^{\dagger}U V_1 = (U^{\dagger}V_2)^{\dagger}V_1 = (U V_2)^{\dagger}V_1=\lambda_2 V_2^{\dagger}V_1 \\ \therefore \lambda_1 V_2^{\dagger} V_1 = \lambda_2 V_2^{\dagger}V_1 \\ \because \lambda_1 \neq \lambda_2 \\ \therefore V_2^{\dagger} V_1 = 0
UV1=λ1V1UV2=λ2V2∴V2†UV1=V2†λ1V1=λ1V2†V1,V2†UV1=(U†V2)†V1=(UV2)†V1=λ2V2†V1∴λ1V2†V1=λ2V2†V1∵λ1=λ2∴V2†V1=0
原命题证毕.