证明厄米矩阵不同特征值对应特征向量正交

证明厄米矩阵不同特征值对应特征向量正交

解:

厄米矩阵满足:
U = U † U = U^{\dagger} U=U
U U U为厄米矩阵, V 1 , V 2 V_1,V_2 V1,V2为特征向量,有:
U V 1 = λ 1 V 1 U V 2 = λ 2 V 2 ∴ V 2 † U V 1 = V 2 † λ 1 V 1 = λ 1 V 2 † V 1 , V 2 † U V 1 = ( U † V 2 ) † V 1 = ( U V 2 ) † V 1 = λ 2 V 2 † V 1 ∴ λ 1 V 2 † V 1 = λ 2 V 2 † V 1 ∵ λ 1 ≠ λ 2 ∴ V 2 † V 1 = 0 U V_1 = \lambda_1 V_1 \\ U V_2 = \lambda_2 V_2 \\ \therefore V_2^{\dagger}U V_1 = V_2^{\dagger} \lambda_1 V_1 = \lambda_1 V_2^{\dagger} V_1, \\ V_2^{\dagger}U V_1 = (U^{\dagger}V_2)^{\dagger}V_1 = (U V_2)^{\dagger}V_1=\lambda_2 V_2^{\dagger}V_1 \\ \therefore \lambda_1 V_2^{\dagger} V_1 = \lambda_2 V_2^{\dagger}V_1 \\ \because \lambda_1 \neq \lambda_2 \\ \therefore V_2^{\dagger} V_1 = 0 UV1=λ1V1UV2=λ2V2V2UV1=V2λ1V1=λ1V2V1,V2UV1=(UV2)V1=(UV2)V1=λ2V2V1λ1V2V1=λ2V2V1λ1=λ2V2V1=0
原命题证毕.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值