Map Reduce的 计算步骤

本文详细介绍了MapReduce的计算步骤,从InputFormat开始,包括Split、Map、Partition、Sort、Combiner、Group和Reduce等关键阶段,最后由OutputFormat将结果写入HDFS。每个步骤都阐述了其功能和在处理数据过程中的作用。
摘要由CSDN通过智能技术生成

第1步:InputFormat
InputFormat 到hdfs上读取数据
将数据传给Split

第2步:Split
//设置读取数据的路径 TextInputFormat.addInputPath(job,new Path(“C:\bbb.txt”));

3、设置Map job.setMapperClass(WordCountMap.class); //设置map输出的类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(LongWritable.class);

4、设置reduce代码 job.setReducerClass(WordCountReduce.class); //设置reduce输出的类型 job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);

5、设置读输出数据的class job.setOutputFormatClass(TextOutputFormat.class); //设置输出数据的路径 TextOutputFormat.setOutputPath(job,new Path(“C:\ccc.txt”));

6、等待代码执行(返回状态码) return job.waitForCompletion(true)?0:1;
Split将数据进行逻辑切分,
将数据传给RR

第3步:RR
RR:将传入的数据转换成一行一行的数据,输出行首字母偏移量和偏移量对应的数据
将数据传给MAP

第4步:MAP
MAP:根据业务需求实现自定义代码
将数据传给Shuffle的partition

第5步:partition
partition:按照一定的分区规则,将key value的list进行分区。
将数据传给Shuffle的Sort

第6步:Sort
Sort:对分区内的数据进行排序
将数据传给Shuffle的combiner

第7步:combiner
combiner:对数据进行局部聚合。
将数据传给Shuffle的Group

第8步:Group
Group:将相同key的key提取出来作为唯一的key,
将相同key对应的value获取出来作为value的list
将数据传给Reduce

第9步:Reduce
Reduce:根据业务需求进行最终的合并汇总。
将数据传给outputFormat

第10步:outputFormat
outputFormat:将数据写入HDFS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值