7-24 约分最简分式

题目要求

编写一个程序,要求用户输入一个分数,然后将其约分为最简分式。最简分式是指分子和分母不具有可以约分的成分了。如6/12可以被约分为1/2。当分子大于分母时,不需要表达为整数又分数的形式,即11/8还是11/8;而当分子分母相等时,仍然表达为1/1的分数形式。

输入格式:
输入在一行中给出一个分数,分子和分母中间以斜杠/分隔。

输出格式:
在一行中输出这个分数对应的最简分式,格式与输入的相同,即采用分子/分母的形式表示分数。如 5/6表示6分之5。

算法思路

本题可以直接采用7-33有理数加法里约分的思路。

代码实现

#include <stdio.h>

void Reduce(int, int);

int main() {
    int a1;   //分子
    int a2;   //分母
    
    scanf("%d/%d", &a1, &a2);
    Reduce(a1, a2);
    
    return 0;
}

void Reduce(int a1, int a2)
{
    int min;     //min保存分子和分母的最小值,为for循环做准备
    
    if(a1 >= a2 )
    {
        min = a2;
    }
    else
    {
        min = a1;
    }
    
    int temp;
     //化简
    for(temp=min; temp>1; temp--)
    {
        if(a1%temp == 0 && a2%temp == 0)
        {
            a1 = a1/temp;
            a2 = a2/temp;
        }
    }
    
    printf("%d/%d", a1, a2);
}

小结

如果你有更高效的代码或建议,请不吝赐教!
如果你觉得这篇文章对你有帮助,请为小白博主点个赞,你的点赞是对小白博主最大的鼓励!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值