最短路问题__dijkstra、bellman_ford、spfa、Floyd

目录

一.朴素Dijkstra算法(解决稠密图)O(n^2)

二.堆优化版的Dijkstra算法(解决稀疏图)O(mlogn)

三.Bellman_Ford算法  O(nm)

四.SPFA算法 O(km)(k为每个节点进入队列的次数)

五.Floyd算法 O(n^3)


一.朴素Dijkstra算法(解决稠密图)O(n^2)

思路

1.用dist数组保存从源点到其他各个点的距离,dist[i]表示从源点到节点i的距离,初始化所有距离都为正无穷。用st状态数组记录是否找到从源点到i点的最短距离, 若为真则找到了,初始化数组元素都为假。

2.令dist[1] = 0, 因为从源点到源点的距离为0

3.进行n - 1次迭代(因为源点已经加入)

4.遍历 dist 数组,找到一个节点t,这个节点是:没有确定最短路径的节点中距离源点最近的点。此时就找到了源点到该节点的最短距离,st[t] 置为 1。

5.用t来更新其它点的距离。遍历 t 所有可以到达的节点 j,如果 dist[j] 大于 dist[t] 加上 t -> j 的距离,即 dist[j] > dist[t] + w[t][j] ,则更新 dist[j] = dist[t] + w[t][j]。

6.直到st数组全为真。(此时dist数组中保存着从源点到各个节点的最短距离)

 代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 520, M = 100010;  //稠密图
int dist[N], g[N][N], n, m;
bool st[N];  //判断当前点的最短距离是否确定

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;  //源点距离为0
    
    for (int i = 0; i < n; i ++)  //剩n - 1个点要更新所以迭代n - 1次
    {
        int t = -1;
        for (int j = 1; j <= n; j ++)  //找到节点t
            if (!st[j] && (t == -1 || dist[j] < dist[t]))
                t = j;
        st[t] = true;
        
        for (int j = 1; j <= n; j ++)  //用t来更新所有能更新的点
            dist[j] = min(dist[j], dist[t] + g[t][j]);
    }
    if (dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    
    memset(g, 0x3f, sizeof g);
    while (m --)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        g[a][b] = min(g[a][b], c);  //有重边则保留最短的一条边
    }
    printf("%d", dijkstra());
    return 0;
}

二.堆优化版的Dijkstra算法(解决稀疏图)O(mlogn)

思路

1. 一号点的距离初始化为零,其他点初始化成无穷大。
2. 将一号点放入堆(优先队列)中。
3. 不断循环,直到堆空。每一次循环中执行的操作为:
    弹出堆顶(与朴素版diijkstra找到S外距离最短的点相同O(1),并标记该点的最短路径已经确定)。与朴素版dijkstra相比优化了寻找最短距离
    用该点更新临界点的距离,若更新成功就加入到堆中。

代码

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;

typedef pair<int, int> PII;
const int N = 200010;
int n, m, dist[N];
int h[N], e[N], ne[N], w[N], idx;
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    heap.push({0, 1});
    dist[1] = 0;
    
    while (heap.size())
    {
        PII t = heap.top();
        heap.pop();
        
        int ver = t.second, distance = t.first;
        if (st[ver]) continue;
        st[ver] = true;
        
        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[ver] + w[i])
            {
                dist[j] = dist[ver] + w[i];
                heap.push({dist[j], j});
            }
        }
    }
    if (dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

int main()
{
    scanf("%d%d", &n, &m);
    memset(h, -1, sizeof h);
    while (m --)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    printf("%d", dijkstra());
    return 0;
}

三.Bellman_Ford算法  O(nm)

解决有边数限制的最短路问题

思路:

其原理为连续进行松弛,在每次松弛时把每条边都更新一下,若在 n-1 次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成。

for 循环k次  (即最短路径不超过k条边)

        for 循环所有边a, b, c(松弛操作)

                dist[b] = min(dist[b], last[a] + c)

注意:last数组是上一次迭代后 dist数组的备份,由于是每个点同时向外出发,因此需要对 dist数组进行备份,若不进行备份会因此发生串联效应,影响到下一个点

853. 有边数限制的最短路 

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible

注意:图中可能 存在负权回路 。

输入格式

第一行包含三个整数 n,m,kn,m,k。

接下来 mm 行,每行包含三个整数 x,y,z 表示存在一条从点 x 到点 y 的有向边,边长为 zz。

点的编号为 1∼n。

输出格式

输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。

如果不存在满足条件的路径,则输出 impossible

数据范围

1≤n,k≤500,
1≤m≤10000,
1≤x,y≤n,
任意边长的绝对值不超过 10000。

输入样例:

3 3 1
1 2 1
2 3 1
1 3 3

输出样例:

3
#include <bits/stdc++.h>

using namespace std;

const int N = 510, M = 10010;

struct Edge {
    int a, b, w;
}edges[M];

int n, m, k;  //边数限制为k
int dist[N], backup[N]; //backup为备份数组,防止串联

void bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    for (int i = 0; i < k; i ++)
    {
        memcpy(backup, dist, sizeof dist);
        for (int j = 0; j < m; j ++)
        {
            auto e = edges[j];
            int a = e.a, b = e.b, w = e.w;
            dist[b] = min(dist[b], backup[a] + w);
            //使用备份数组backup,避免给a更新后立马更新b, 防止b一次性最短路径就多了条边
        }
    }
}

int main()
{
    cin >> n >> m >> k;
    for (int i = 0; i < m; i ++)
        scanf("%d%d%d", &edges[i].a, &edges[i].b, &edges[i].w);
    
    bellman_ford();
    
    if (dist[n] > 0x3f3f3f3f / 2) puts("impossible");
    else printf("%d", dist[n]);
    
    return 0;
}

四.SPFA算法 O(km)(k为每个节点进入队列的次数)

注:最坏为O(nm)

思路

1.用dist数组保存从源点到其他各个点的距离,dist[i]表示从源点到节点i的距离,初始化所有距离都为正无穷,令dist[1] = 0, 因为从源点到源点的距离为0

2.建立一个队列,初始时队列里只有起始点,用st数组,标记点是否在队列中队头不断出队,计算始点起点经过队头到其他点的距离是否变短,如果变短且被点不在队列中,则把该点加入到队尾。

3.重复执行直到队列为空。

若一条路径上边数大于等于点数,则该路径一定存在负环

851. spfa求最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible

数据保证不存在负权回路。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z 表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 impossible

数据范围

1≤n,m≤105,
图中涉及边长绝对值均不超过 10000。

输入样例:

3 3
1 2 5
2 3 -3
1 3 4

输出样例:

2
#include <bits/stdc++.h>

using namespace std;

const int N = 100010;

int n, m;
int h[N], e[N], w[N], ne[N], idx;
int dist[N];
bool st[N];  //提高效率,避免重复入队

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

void spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    queue<int> q;
    q.push(1);
    st[1] = true;
    
    while (q.size())
    {
        int t = q.front();
        q.pop();
        
        st[t] = false;  //t出队后,更新st的状态
        
        for (int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (! st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
}

int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    
    while (m --)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    
    spfa();
    
    if (dist[n] == 0x3f3f3f3f) cout << "impossible";
    else cout << dist[n];
    
    return 0;
}

852. spfa判断负环

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你判断图中是否存在负权回路。

输入格式

第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

如果图中存在负权回路,则输出 Yes,否则输出 No

数据范围

1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。

输入样例:

3 3
1 2 -1
2 3 4
3 1 -4

输出样例:

Yes
#include <bits/stdc++.h>

using namespace std;

const int N = 2010, M = 10010;

int n, m;
int h[N], e[M], w[M], ne[M], idx;
int dist[N], cnt[N];  //cnt记录每个点到起点的边数
bool st[N];

void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}

bool spfa()
{
    //无需初始化dist数组,因为若存在负环,dist为0也会被更新

    queue<int> q;
    //若只加入节点1,则判断的是从1出发的路径上有无负环 
    for (int i = 1; i <= n; i ++)  //1可能与负环回路不连通,所以要将全部点加入
    {
        st[i] = true;
        q.push(i);
    }
    
    while (q.size())
    {
        int t = q.front();
        q.pop();
        st[t] = false;
        
        for (int i = h[t]; ~i; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;  //更新当前路径上的边数
                
                if (cnt[j] >= n) return true;  //若该路径上边数大于等于点数,则存在负环
                
                if (! st[j])
                {
                    st[j] = true;
                    q.push(j);
                }
            }
        }
    }
    return false;
}

int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    
    while(m --)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        add(a, b, c);
    }
    
    if (spfa()) puts("Yes");
    else puts("No");
    
    return 0;
}

五.Floyd算法 O(n^3)

思路

三层循环 (基于动态规划)

d[k][i][j]表示所有从i出发,最终走到j,且中间只经过节点编号不超过k的所有路径

d[i][j] = min(d[i][j], d[i][k]+d[k][j])

代码

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 210, INF = 1e9;
int n, m, q;
int d[N][N];

void floyd()
{
    for (int k = 1; k <= n; k ++)
        for (int i = 1; i <= n; i ++)
            for (int j = 1; j <= n; j ++)
                d[i][j] = min(d[i][j], d[i][k]+d[k][j]);
}

int main()
{
    cin >> n >> m >> q;
    for (int i = 1; i <= n; i ++)
        for (int j = 1; j <= n; j ++)
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;
    while (m --)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        d[a][b] = min(d[a][b], c);
    }
    floyd();
    while (q --)
    {
        int x, y;
        scanf("%d%d", &x, &y);
        if (d[x][y] > INF/2) puts("impossible");
        else cout << d[x][y] << endl;
    }
}

  • 6
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值