Leetcode 动态规划

文章讲述了动态规划在编辑距离计算(EditDistance)、回文子串计数(PalindromeSubstrings)、最长回文子序列(LongestPalindromicSubsequence)、二叉树右侧视图(BinaryTreeRightSideView)、翻转二叉树(InvertBinaryTree)、对称树(SymmetricTree)和二叉树最大深度(MaximumDepthofBinaryTree)等问题中的解决方案,通过递归和迭代方法实现。
摘要由CSDN通过智能技术生成

动态规划:

72. Edit Distance

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                }
                else {
                    dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }
};

这里的增的功能用另一个删来代替

647. Palindromic Substrings

class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));
        int res = 0;

        for(int i=s.size()-1; i>=0; i--){
            for(int j=i; j<s.size(); j++){
                if(s[i] == s[j]){
                    if(j-i<= 1){
                        res++;
                        dp[i][j] = true;
                    }else if(dp[i+1][j-1]){
                        res++;
                        dp[i][j] = true;
                    }
                }
            }
        }

        return res;
    }
};

1.dp[i][j]这里要设置为在范围[i,j]范围内是否是回文串

2.范围,因为这里依赖于dp[i+1][j-1]所以一个从大到小,一个从小到大

(完全看答案的,之后要重新写)

516. Longest Palindromic Subsequence

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
        for(int i=0; i<s.size(); i++) dp[i][i] = 1;
        for(int i=s.size()-1; i>=0; i--){
            for(int j=i+1; j<s.size(); j++){
                if(s[i] == s[j]){
                    dp[i][j] = dp[i+1][j-1] + 2;
                }else{
                    dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
                }
            }
        }

        return dp[0][s.size()-1];
    }
};

1.初始化问题:

因为我们设定的是j=i+1, 所以会算不到i=j的时候,所以要初始化为1

2.当不等的时候,要分别看加进来i,j的情况,而不是直接dp[i][j] = dp[i-1][j-1]

二叉树:

199. Binary Tree Right Side View

1.BFS

class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        queue<TreeNode*> que;
        vector<int> res;

        if(root != NULL) {
            que.push(root);
        }
        while(!que.empty()){
            int size = que.size();

            for(int i=0; i<size; i++){
                TreeNode* cur = que.front();
                if(i == size-1){
                    res.push_back(cur->val);
                }
                que.pop();
                if(cur->left) que.push(cur->left);
                if(cur->right) que.push(cur->right);
            }
        }
        return res;
    }
};

2.dfs

class Solution {
public:
    vector<int> res;
    int depth = 0;

    vector<int> rightSideView(TreeNode* root) {
        traversal(root);
        return res;
    }

    void traversal(TreeNode* cur){
        if(cur == NULL) return;
        depth++;
        if(res.size() < depth){
            res.push_back(cur->val);
        }
        traversal(cur->right);
        traversal(cur->left);
        depth--;
    }
};

226. Invert Binary Tree

1.分解问题

class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if(root == NULL) return NULL;

        TreeNode* left = invertTree(root->left);
        TreeNode* right = invertTree(root->right);

        root->left = right;
        root->right = left;

        return root;

    }
};

2.遍历

class Solution {
public:

    TreeNode* invertTree(TreeNode* root) {
        traversal(root);
        return root;
    }

    void traversal(TreeNode* cur){
        if(cur == NULL) return;

        TreeNode* left = cur->left;
        cur->left = cur->right;
        cur->right = left;

        traversal(cur->left);
        traversal(cur->right);
    }
};

101. Symmetric Tree

class Solution {
public:
    bool compare(TreeNode* left, TreeNode* right){
        if(left != NULL && right == NULL) return false;
        else if(left == NULL && right != NULL) return false;
        else if(left == NULL && right == NULL) return true;
        else if(left->val != right->val) return false;
        
        bool outside = compare(left->left, right->right);
        bool inside = compare(left->right, right->left);
        bool isSame = outside && inside;
        return isSame;
    }
    bool isSymmetric(TreeNode* root) {
        if(root == NULL) return true;
        return compare(root->left, root->right);

    }
};

104. Maximum Depth of Binary Tree

1.遍历思想

class Solution {
public:
    int res = 0;
    int depth = 0;

    int maxDepth(TreeNode* root) {
        traversal(root);
        return res;
    }
    void traversal(TreeNode* cur){
        if(cur == NULL) return;

        depth++;
        res = max(res, depth);
        traversal(cur->left);
        traversal(cur->right);
        depth--;
    }
};

2.分解问题

class Solution {
public:
    int maxDepth(TreeNode* root) {
        if(root == NULL) return 0;
        int left = maxDepth(root->left);
        int right = maxDepth(root->right);
        return max(left, right) +1;

    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值