51nod 1113 矩阵快速幂 (矩阵的n次方)

43 篇文章 0 订阅

 

给出一个N * N的矩阵,其中的元素均为正整数。求这个矩阵的M次方。由于M次方的计算结果太大,只需要输出每个元素Mod (10^9 + 7)的结果。

Input

第1行:2个数N和M,中间用空格分隔。N为矩阵的大小,M为M次方。(2 <= N <= 100, 1 <= M <= 10^9)
第2 - N + 1行:每行N个数,对应N * N矩阵中的1行。(0 <= N[i] <= 10^9)

Output

共N行,每行N个数,对应M次方Mod (10^9 + 7)的结果。

Input示例

2 3
1 1
1 1

Output示例

4 4
4 4

 

 

 

题意明了,一个矩阵和自己不断相乘,我也是第一次做有关矩阵乘法的题,之前做过很多快速幂的题,这道题就是快速幂结合矩阵乘法,横列都是一样,难度就没那么高了

   1: 因为矩阵相乘的一步要用到原本矩阵的数组,所以矩阵各位置算出来不能马上替换,因为其他位置的数算的时候会用到

   2:我只用了一个最简单暴力的方法,开个数组暂时保存,整个矩阵算完后再替换,这样也比较麻烦,有空再看看怎么乘优化

   代码献上

  

#include<cstdio>
#include<iostream>
#include<mem.h>
#include<math.h>
using namespace std;
  int n,m,i,j,j2;
 int mod=1000000007,a[100][100],b[100][100],c[100][100];   //c是答案,b是临时数组,a是用于快速函数中

 void kuaisu(int n,int m)
 {
     while(m>0)
     {
         if(m&1)
         {
             memset(b,0,sizeof(b));     //临时数组清0
         for(i=0;i<n;i++)                    //用临时数组保存计算
        for(j=0;j<n;j++)
           for(j2=0;j2<n;j2++)
            b[i][j]=(b[i][j]+c[i][j2]*a[j2][j]%mod)%mod;
             for(i=0;i<n;i++)
        for(j=0;j<n;j++)                 //将a数组替换为b
            c[i][j]=b[i][j];
         }


        m=m>>1;
        memset(b,0,sizeof(b));      //b清0,用于保存a * a
         for(i=0;i<n;i++)
        for(j=0;j<n;j++)
        {
           for(j2=0;j2<n;j2++)
           {
               b[i][j]=(b[i][j]+a[i][j2]*a[j2][j]%mod)%mod;
           }
        }
        for(i=0;i<n;i++)
        for(j=0;j<n;j++)
            a[i][j]=b[i][j];
     }

 }
int main()
{
  memset(b,0,sizeof(b));
    scanf("%d%d",&n,&m);
    for(i=0;i<n;i++)
        for(j=0;j<n;j++)
        {
            scanf("%d",&a[i][j]);
            c[i][j]=a[i][j];
        }
    kuaisu(n,m-1);
    for(i=0;i<n;i++)
        {
        for(j=0;j<n;j++)
            printf("%d ",c[i][j]);
            printf("\n");
        }

return 0;
}

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值