给出一个N * N的矩阵,其中的元素均为正整数。求这个矩阵的M次方。由于M次方的计算结果太大,只需要输出每个元素Mod (10^9 + 7)的结果。
Input
第1行:2个数N和M,中间用空格分隔。N为矩阵的大小,M为M次方。(2 <= N <= 100, 1 <= M <= 10^9)
第2 - N + 1行:每行N个数,对应N * N矩阵中的1行。(0 <= N[i] <= 10^9)
Output
共N行,每行N个数,对应M次方Mod (10^9 + 7)的结果。
Input示例
2 3
1 1
1 1
Output示例
4 4
4 4
题意明了,一个矩阵和自己不断相乘,我也是第一次做有关矩阵乘法的题,之前做过很多快速幂的题,这道题就是快速幂结合矩阵乘法,横列都是一样,难度就没那么高了
1: 因为矩阵相乘的一步要用到原本矩阵的数组,所以矩阵各位置算出来不能马上替换,因为其他位置的数算的时候会用到
2:我只用了一个最简单暴力的方法,开个数组暂时保存,整个矩阵算完后再替换,这样也比较麻烦,有空再看看怎么乘优化
代码献上
#include<cstdio>
#include<iostream>
#include<mem.h>
#include<math.h>
using namespace std;
int n,m,i,j,j2;
int mod=1000000007,a[100][100],b[100][100],c[100][100]; //c是答案,b是临时数组,a是用于快速函数中
void kuaisu(int n,int m)
{
while(m>0)
{
if(m&1)
{
memset(b,0,sizeof(b)); //临时数组清0
for(i=0;i<n;i++) //用临时数组保存计算
for(j=0;j<n;j++)
for(j2=0;j2<n;j2++)
b[i][j]=(b[i][j]+c[i][j2]*a[j2][j]%mod)%mod;
for(i=0;i<n;i++)
for(j=0;j<n;j++) //将a数组替换为b
c[i][j]=b[i][j];
}
m=m>>1;
memset(b,0,sizeof(b)); //b清0,用于保存a * a
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
for(j2=0;j2<n;j2++)
{
b[i][j]=(b[i][j]+a[i][j2]*a[j2][j]%mod)%mod;
}
}
for(i=0;i<n;i++)
for(j=0;j<n;j++)
a[i][j]=b[i][j];
}
}
int main()
{
memset(b,0,sizeof(b));
scanf("%d%d",&n,&m);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
scanf("%d",&a[i][j]);
c[i][j]=a[i][j];
}
kuaisu(n,m-1);
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
printf("%d ",c[i][j]);
printf("\n");
}
return 0;
}