还是算法的作业...
要求给出一种作业调度方案,使所给的n个作业在尽可能短的时间内由m台机器加工处理完成。每个作业均可在任何一台机器上加工处理,但未完工前不允许中断处理。作业不能拆分成更小的子作业。
提示:
① 把作业按加工所用的时间从大到小排序
② 如果作业数目比机器的数目少或相等,则直接把作业分配下去
③ 如果作业数目比机器的数目多,则每台机器上先分配一个作业,如下的作业分配时,是选那个表头上s最小的链表加入新作业。
当n<=m(作业数小于机器数)时,只要将机器i的 时间区间分配给作业 i 即可;
当n>m(作业数大于机器数)时,首先将n个作业从大到小排序,按照顺序将作业分配给空闲的机器。也就是说从剩下的作业中,选择需要处理时间最长的,然后依次选择处理时间较短的,直到所有的作业全部处理完毕。
假定有8个独立作业,所需处理时间分别为{17,11,15,9,8,4,5,2},由五台机器M1,M2,M3,M4,M5加工。按照贪心算法产生的作业调度如下图所示,所需总加工时间为17。
时间复杂度分析:排序的时间复杂度为O(nlogn)。
代码实现:
#include<stdio.h>
#define N 8 //作业数
#define M 5 //机器数
int s[M] = {0,0,0};//每台机器当前已分配的作业总耗时
int main(void)
{
int time[N] = {17,15,11,9,8,5,4,2};//处理时间按从大到小排序
int maxtime = 0;
if(M >= N)
{
maxtime = setwork1(time,N);
}
else
{
maxtime = setwork2(time,N);
}
printf("最多耗费时间%d。",maxtime);
}
//机器数大于待分配作业数
int setwork1(int t[],int n)
{
int i;
for(i=0;i<n;i++)
{
s[i] = t[i];
}
int ma = max(s,N);
return ma;
}
//机器数小于待分配作业数
int setwork2(int t[],int n)
{
int i;
int mi = 0;
for(i=0;i<n;i++)
{
mi = min(M);
printf("第%d号作业,时间和最小的机器号为%d.时间和为%d:\n",i,mi,s[mi]);
s[mi] = s[mi]+t[i];
}
int ma = max(s,M);
return ma;
}
//求出目前处理作业的时间和 最小的机器号
int min(int m)
{
int min = 0;
int i;
for(i=1;i<m;i++)
{
if(s[min] > s[i])
{
min = i;
}
}
return min;
}
//求最终结果(最长处理时间)
int max(int s[],int num)
{
int max = s[0];
int i;
for(i=1;i<num;i++)
{
if(max < s[i])
{
max = s[i];
}
}
return max;
}
编译结果: