图像分割--入门了解

文章介绍了语义分割、实例分割和全景分割三种图像分割技术,其中语义分割关注类别划分,实例分割能区分同一类别的不同个体,全景分割结合两者。使用labelme工具可进行语义分割和全景分割的数据集标注,全景分割需额外标注背景。
摘要由CSDN通过智能技术生成

一.  三种分割

1. 语义分割(semantic segmentation)

语义分割:语义分割通过对图像中的每个像素进行密集的预测、推断标签来实现细粒度的推理,从而使每个像素都被标记为一个类别,但不区分属于相同类别的不同实例。

比如说图中三个帅哥脸蛋儿,语义分割要做的是就是找到属于脸蛋儿的像素点,经过语义分割后就如图2所示。语义分割对图1进行类别划分,在属于小男孩的像素点标蓝色,背景标黄,这就形成了类,但是三个帅哥分不出,都一个颜色。

 

                                     图1                                                                         图2

 2. 实例分割(Instance segmentation)

实例分割:目标检测和语义分割的结合。先检测目标物体,在进行分割,只对特定的物体进行分类,相对语义分割,实例分割需要标注出图上同一物体的不同个体(帅哥1,帅哥2,帅哥3)。

 

 3. 全景分割(Panoramic segmentation)

论文地址:https://arxiv.org/abs/1801.00868

全景分割是语义分割和实例分割的结合。但实例分割只对图像中的对象进行检测,并对检测到的对象进行分割,而全景分割是对图中的所有物体包括背景都要进行检测和分割。

 

 二. 标注自己的数据集

1. 语义分割标注数据集

打开labelme.exe,打开标注文件夹之后,点击Create Polygons,即可进行标注,保存成json文件就可以。

2. 全景分割标注数据集

全景分割跟语义分割的区别就是,一个识别背景一个不识别背景,所以标注全景分割的数据集的时候,只需先将整张图片全部框起上,然后在标注剩余的目标就可以。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值