无向带权图-最小生成树(普里姆算法)

 注:本文根据普里姆算法的自拟题目,和数据结构-带权无向图-最小生成树(克鲁斯卡尔算法)-CSDN博客类似

Description
根据输入构建无向带权图,并利用普里姆法求出最小生成树,输出该最小生成树的各边权值和。

输入:

第一行为:结点数; 第二行为各结点名;第三行为各边的权值。

输出:最小生成树的各边权值和。
Sample Input
5

A B C D E

A B 10

A C 8

A E 3

B C 2

B D 5

C E 7

D E 4

Sample Output
14

Hint
输出有换行符。
 

#include <bits/stdc++.h>
#define Maxnum 10
#define Maxint 32576
using namespace std;

typedef struct Arcnode
{
    int adj;
} adjlist[Maxnum][Maxnum];
typedef struct Vnode
{
    char vexs[Maxnum];
    adjlist arcs;
    int vex, arc;
} MG;
typedef struct node
{
    char adjvex;
    int lowcost;
} node, closedge[Maxnum];

int locatevex(MG G, char v)
{ // 查找下标
    int i;
    for (int i = 0; i < G.vex; i++)
    {
        if (v == G.vexs[i])
        {
            return i;
        }
    }
}
void creatMG(MG &G)
{
    cin >> G.vex;
    char v1, v2;
    int in;
    for (int i = 0; i < G.vex; i++)
    {
        cin >> G.vexs[i];
        for (int j = 0; j < G.vex; j++)
        {
            G.arcs[i][j].adj = Maxint;
        }
    }
    while (cin >> v1 >> v2 >> in)
    {
        int i = locatevex(G, v1);
        int j = locatevex(G, v2);
        G.arcs[i][j].adj = in;
        G.arcs[j][i].adj = in; // 记录每个边结点的下标
    }
}
int Find(closedge close, int n)
{
    int min = Maxint, k;
    for (int i = 0; i < n; i++)
    {
        if (close[i].lowcost < min && close[i].lowcost != 0)
        {
            min = close[i].lowcost;
            k = i;
        }
    }
    return k;
}
void PLM_MST(MG G, int &cnt)
{ // 默认从0顶点开始出发
    int i, j, k = 0;
    closedge close;
    for (j = 0; j < G.vex; j++)
    { // 初始化辅助数组
        if (j != k)
        { // 与k相邻的为权值,其他为最大值
            close[j].adjvex = '\0';
            close[j].lowcost = G.arcs[k][j].adj;
        }
    }
    close[k].lowcost = 0;
    for (i = 1; i < G.vex; i++)
    {
        k = Find(close, G.vex);     // 查找未被标记中权值最小的结点(防止出现回路)
        cnt += close[k].lowcost;    // 记录权值和
        close[k].lowcost = 0;       // 标记
        for (j = 0; j < G.vex; j++) // 更新辅助数组的值
        {
            if (G.arcs[k][j].adj < close[j].lowcost)
            { // 此时与k相邻比记录的小就更新
                close[j].adjvex = G.vexs[k];
                close[j].lowcost = G.arcs[k][j].adj;
            }
        }
    }
}
int main()
{
    MG G;
    creatMG(G);
    int cnt = 0; // 记录最小生成树权值和
    PLM_MST(G, cnt);
    cout << cnt << "\n";
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值