HDU ~ 1394 ~ Minimum Inversion Number(暴力||归并排序||线段树||树状数组)

题目网址:Minimum Inversion Number

Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.
 

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 

Output
For each case, output the minimum inversion number on a single line.
 

Sample Input
 
 
10 1 3 6 9 0 8 5 7 4 2
 

Sample Output
 
 
16
 

Author
CHEN, Gaoli
 

Source
 

Recommend
Ignatius.L   |   We have carefully selected several similar problems for you:   1166  1698  1540  1542  1255 
 

题意:给你一个n,然后给你n个数字(0-n-1不重不漏!!!)的一个序列,你会进行n-1次变换每次把第一个数字放在最后一位,然后问你这些所有的序列的逆序数中最小的值

思路:首先对于这四种方法共同点都是他们都只求一次原始序列的逆序数,如果每变换一次求一次肯定超时;为什么只需要求一次呢,这个就这n个数字不重不漏有很大关系。

假设当前序列的逆序数为ans,则下一个序列的逆序数为:ans=ans-a[i]+(n-1-a[i]);         a[i]就是原始序列的第几位数字

假如上一个序列逆序数为ans,n==10,第一个数字为3,那么我们把3放在最后边那么3的逆序数变为0,那么3的逆序数为多少,因为序列中数字不重不漏,3在第一位,后边比他小的数字也就有3个0,1,2正好是这个数字的大小,所以ans=ans-a[i],3放在后边之后,比3大的数字的逆序数都加了1,同样因为不重不漏,所以比三大的数字有n-1-a[i]个,

ans=ans-a[i]+(n-1-a[i]);这样我们在求出来原始序列的逆序数后,只需要花费O(n)的复杂度就能求出来答案

暴力解法:

直接挨个求每个数字的逆序数加起来得到整个序列的逆序数;

#include <bits/stdc++.h> 
using namespace std;
const int maxn=5005;
int main()  
{  
    int n,a[maxn],ans;  
    while(~scanf("%d",&n))  
    {  
        for(int i=0;i<n;i++) scanf("%d",&a[i]);
        ans=0;
        for(int i=0;i<n;i++)
		{
			for(int j=i+1;j<n;j++)  
            {  
                if(a[i]>a[j]) ans++;  
            }  
		}  
        int MIN=ans;  
        for(int i=0;i<n;i++)  
        {  
        	ans=ans-a[i]+(n-1-a[i]);  
           	MIN=min(MIN,ans);
        }  
        printf("%d\n",MIN);  
    }  
    return 0;  
} 
归并排序解法:

归并排序解法,我们需要多开两个数组,一个b数组存一下原始序列,一个原始序列a数组然后进行归并排序,另一个是归并排序中用的数组temp;然后我们在归并排序过程中进行统计逆序数,当a[i]>a[j],即a[i]<a[i+1]<...<a[mid-1]<a[mid],共mid-i+1个数

#include <bits/stdc++.h> 
using namespace std;
const int maxn=5005;
int n,a[maxn],b[maxn],temp[maxn],ans;
void merge(int l,int mid,int r)
{
	int pos=0,i=l,j=mid+1;
	while(i<=mid&&j<=r)
	{
		if(a[i]<=a[j]) temp[pos++]=a[i++];
		else
		{
			ans+=mid+1-i;temp[pos++]=a[j++];
		}
	}
	while(i<=mid) temp[pos++]=a[i++];
	while(j<=r) temp[pos++]=a[j++];
	for(i=0;i<pos;i++) a[i+l]=temp[i];
} 
void merge_sort(int l,int r)
{
	if(l==r) return ;
	int mid=(l+r)/2;
	merge_sort(l,mid);
	merge_sort(mid+1,r);
	merge(l,mid,r);
}
int main()
{
	while(~scanf("%d",&n))
	{
		for(int i=0;i<n;i++)
		{
			scanf("%d",&a[i]);b[i]=a[i];
		}
		ans=0;
		merge_sort(0,n-1);
		int MIN=ans;
		for(int i=0;i<n;i++)
		{
			ans=ans-b[i]+(n-1-b[i]);
			MIN=min(MIN,ans);
		}
		cout<<MIN<<endl;
	}
	return 0;
}
线段树解法:

线段树的那个数组里面维护的是这个区间内数字出现次数,所以我们在建立线段树的时候只需要将所有的值都赋0就行了,然后每次输入一个数字a[i]就查询一下a[i]到n-1的区间和,也就是在后面有多少个比a[i]大的数字也就是a[i]的逆序数,统计一下就是原始序列的逆序数。然后在对线段树进行一下单点更新;

#include <bits/stdc++.h> 
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int maxn=5005;
int sum[maxn<<2],a[maxn];
void PushUp(int rt)
{
	sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void build(int l,int r,int rt)
{
	sum[rt]=0;
	if(l==r) return ;
	int m=(l+r)>>1;
	build(lson);
	build(rson);
}
void update(int pos,int l,int r,int rt)
{
	if(l==r)
	{
		sum[rt]++;return ;
	}
	int m=(l+r)>>1;
	if(pos<=m) update(pos,lson);
	else update(pos,rson);
	PushUp(rt);
}
int query(int L,int R,int l,int r,int rt)
{
	if(L<=l&&r<=R)
	{
		return sum[rt];
	}
	int m=(l+r)>>1,ret=0;
	if(L<=m) ret+=query(L,R,lson);
	if(R>m) ret+=query(L,R,rson);
	return ret;
}
int main()
{
	int n;
	while(cin>>n)
	{
		build(0,n-1,1);
		int ans=0;
		for(int i=0;i<n;i++)
		{
			scanf("%d",&a[i]);
			ans+=query(a[i],n-1,0,n-1,1);
			update(a[i],0,n-1,1);
		}
		int MIN=ans;
		for(int i=0;i<n;i++)
		{
			ans=ans+(n-a[i]-1)-a[i];
			MIN=min(MIN,ans);
		}
		cout<<MIN<<endl;
	}
	return 0;
}
树状数组解法:

我感觉树状数组解法跟线段树有点像,树状数组里面存的是前n个数字中数字出现的次数(因为会有0这个数字而且树状数组中一般不用0这个位置所以我们将每个a[i]都加1),对于i位置的数字a[i],比a[i]小的数字有Sum(a[i])个,所以前面有i-1-Sum(a[i])个数字比a[i]大;

#include <bits/stdc++.h> 
using namespace std;
const int maxn=5005;
int n,a[maxn],c[maxn];
int lowbit(int x)
{
	return x&(-x);
}
int Sum(int x)
{
	int s=0;
	while(x>0)
	{
		s+=c[x];
		x-=lowbit(x);
	}
	return s;
}
void add(int pos,int value)
{
	while(pos<=n)
	{
		c[pos]+=value;
		pos+=lowbit(pos);
	}
}
int main()
{
	while(cin>>n)  
    {  
        memset(c,0,sizeof(c));  
        int ans=0;  
        for(int i=1;i<=n;i++)  
        {  
            scanf("%d",&a[i]);
            ans+=i-1-Sum(a[i]);
			add(a[i]+1,1); 
        }
        int MIN=ans;  
        for(int i=1;i<=n;i++)  
        {  
            ans=ans-a[i]+(n-1-a[i]);  
            MIN=min(MIN,ans);  
        }  
        cout<<MIN<<endl;  
    }  
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值