Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
题意:给你一个n,然后给你n个数字(0-n-1不重不漏!!!)的一个序列,你会进行n-1次变换每次把第一个数字放在最后一位,然后问你这些所有的序列的逆序数中最小的值
思路:首先对于这四种方法共同点都是他们都只求一次原始序列的逆序数,如果每变换一次求一次肯定超时;为什么只需要求一次呢,这个就这n个数字不重不漏有很大关系。
假设当前序列的逆序数为ans,则下一个序列的逆序数为:ans=ans-a[i]+(n-1-a[i]); a[i]就是原始序列的第几位数字
假如上一个序列逆序数为ans,n==10,第一个数字为3,那么我们把3放在最后边那么3的逆序数变为0,那么3的逆序数为多少,因为序列中数字不重不漏,3在第一位,后边比他小的数字也就有3个0,1,2正好是这个数字的大小,所以ans=ans-a[i],3放在后边之后,比3大的数字的逆序数都加了1,同样因为不重不漏,所以比三大的数字有n-1-a[i]个,
ans=ans-a[i]+(n-1-a[i]);这样我们在求出来原始序列的逆序数后,只需要花费O(n)的复杂度就能求出来答案
暴力解法:
直接挨个求每个数字的逆序数加起来得到整个序列的逆序数;
#include <bits/stdc++.h>
using namespace std;
const int maxn=5005;
int main()
{
int n,a[maxn],ans;
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++) scanf("%d",&a[i]);
ans=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[i]>a[j]) ans++;
}
}
int MIN=ans;
for(int i=0;i<n;i++)
{
ans=ans-a[i]+(n-1-a[i]);
MIN=min(MIN,ans);
}
printf("%d\n",MIN);
}
return 0;
}
归并排序解法:
归并排序解法,我们需要多开两个数组,一个b数组存一下原始序列,一个原始序列a数组然后进行归并排序,另一个是归并排序中用的数组temp;然后我们在归并排序过程中进行统计逆序数,当a[i]>a[j],即a[i]<a[i+1]<...<a[mid-1]<a[mid],共mid-i+1个数
#include <bits/stdc++.h>
using namespace std;
const int maxn=5005;
int n,a[maxn],b[maxn],temp[maxn],ans;
void merge(int l,int mid,int r)
{
int pos=0,i=l,j=mid+1;
while(i<=mid&&j<=r)
{
if(a[i]<=a[j]) temp[pos++]=a[i++];
else
{
ans+=mid+1-i;temp[pos++]=a[j++];
}
}
while(i<=mid) temp[pos++]=a[i++];
while(j<=r) temp[pos++]=a[j++];
for(i=0;i<pos;i++) a[i+l]=temp[i];
}
void merge_sort(int l,int r)
{
if(l==r) return ;
int mid=(l+r)/2;
merge_sort(l,mid);
merge_sort(mid+1,r);
merge(l,mid,r);
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);b[i]=a[i];
}
ans=0;
merge_sort(0,n-1);
int MIN=ans;
for(int i=0;i<n;i++)
{
ans=ans-b[i]+(n-1-b[i]);
MIN=min(MIN,ans);
}
cout<<MIN<<endl;
}
return 0;
}
线段树解法:
线段树的那个数组里面维护的是这个区间内数字出现次数,所以我们在建立线段树的时候只需要将所有的值都赋0就行了,然后每次输入一个数字a[i]就查询一下a[i]到n-1的区间和,也就是在后面有多少个比a[i]大的数字也就是a[i]的逆序数,统计一下就是原始序列的逆序数。然后在对线段树进行一下单点更新;
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int maxn=5005;
int sum[maxn<<2],a[maxn];
void PushUp(int rt)
{
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void build(int l,int r,int rt)
{
sum[rt]=0;
if(l==r) return ;
int m=(l+r)>>1;
build(lson);
build(rson);
}
void update(int pos,int l,int r,int rt)
{
if(l==r)
{
sum[rt]++;return ;
}
int m=(l+r)>>1;
if(pos<=m) update(pos,lson);
else update(pos,rson);
PushUp(rt);
}
int query(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R)
{
return sum[rt];
}
int m=(l+r)>>1,ret=0;
if(L<=m) ret+=query(L,R,lson);
if(R>m) ret+=query(L,R,rson);
return ret;
}
int main()
{
int n;
while(cin>>n)
{
build(0,n-1,1);
int ans=0;
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
ans+=query(a[i],n-1,0,n-1,1);
update(a[i],0,n-1,1);
}
int MIN=ans;
for(int i=0;i<n;i++)
{
ans=ans+(n-a[i]-1)-a[i];
MIN=min(MIN,ans);
}
cout<<MIN<<endl;
}
return 0;
}
树状数组解法:
我感觉树状数组解法跟线段树有点像,树状数组里面存的是前n个数字中数字出现的次数(因为会有0这个数字而且树状数组中一般不用0这个位置所以我们将每个a[i]都加1),对于i位置的数字a[i],比a[i]小的数字有Sum(a[i])个,所以前面有i-1-Sum(a[i])个数字比a[i]大;
#include <bits/stdc++.h>
using namespace std;
const int maxn=5005;
int n,a[maxn],c[maxn];
int lowbit(int x)
{
return x&(-x);
}
int Sum(int x)
{
int s=0;
while(x>0)
{
s+=c[x];
x-=lowbit(x);
}
return s;
}
void add(int pos,int value)
{
while(pos<=n)
{
c[pos]+=value;
pos+=lowbit(pos);
}
}
int main()
{
while(cin>>n)
{
memset(c,0,sizeof(c));
int ans=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
ans+=i-1-Sum(a[i]);
add(a[i]+1,1);
}
int MIN=ans;
for(int i=1;i<=n;i++)
{
ans=ans-a[i]+(n-1-a[i]);
MIN=min(MIN,ans);
}
cout<<MIN<<endl;
}
return 0;
}