POJ ~ 3281 ~ Dining (最大流 + 结点容量问题)

9人阅读 评论(0) 收藏 举报
分类:

题意:John有N头牛,F种食物,D种饮料,编号均从1开始。然后N行,开始两个整数表示f,d表示第i行表示第i头牛喜欢吃的食物数和饮料数,然后依次输入食物编号和饮料编号,问最多满足多少头牛?


结点容量问题:每个结点都有一个允许通过的最大流量,称为结点容量。

解:把每个原始点u分裂成u1和u2两个结点,中间连一条有向弧,容量等于u的节点容量。原先到达u的弧改成到达u1;而原先从u出发的弧改成到达u1,而原来从u出发的弧改成从u2出发。


思路:本题中牛就是结点,一个牛最多只能吃一种食物和喝一种饮料,意思就是结点容量为1。将牛拆为两个点,建立超级源和超级汇。

建图如下:


图片来自:点击打开链接

注意:本题中n可能小于F,D。所以建图的时候不要加n,直接加最大值100就好了。因为这个wa了一上午。。。


#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int from, to, cap, flow;       //起点,终点,容量,流量
    Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
    int n, m, s, t;                //结点数,边数(包括反向弧),源点s,汇点t
    vector<Edge> edges;            //边表。edges[e]和edges[e^1]互为反向弧
    vector<int> G[MAXN];           //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
    int d[MAXN];                   //从起点到i的距离(层数差)
    int cur[MAXN];                 //当前弧下标
    bool vis[MAXN];                //BFS分层使用

    void init(int n)
    {
        this->n = n;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }

    void add_edge(int from, int to, int cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }

    bool BFS()//构造分层网络
    {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        d[s] = 0;
        vis[s] = true;
        Q.push(s);
        while (!Q.empty())
        {
            int x = Q.front(); Q.pop();
            for (int i = 0; i < G[x].size(); i++)
            {
                Edge& e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = true;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a)//沿阻塞流增广
    {
        if (x == t || a == 0) return a;
        int flow = 0, f;
        for (int& i = cur[x]; i < G[x].size(); i++)//从上次考虑的弧
        {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)//多路增广
            {
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
    int max_flow(int s, int t)
    {
        this->s = s; this->t = t;
        int flow = 0;
        while (BFS())
        {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }
};
Dinic solve;
int main()
{
    int n, F, D;
    while (~scanf("%d%d%d", &n, &F, &D))
    {
        solve.init(4*100+1);
        //0超级源   1 ~ 100食物   1+100 ~ 2*100牛左   2*100+1 ~ 3*100牛右   3*100+1 ~ 4*100饮料   4*100+1超级汇
        int s = 0, t = 4*100+1;
        for (int i = 1; i <= F; i++) solve.add_edge(s, i, 1);//超级源到食物
        for (int i = 1; i <= D; i++) solve.add_edge(i+3*100, t, 1);//饮料到超级汇
        for (int i = 1; i <= n; i++)
        {
            int f, d; scanf("%d%d", &f, &d);
            while (f--)
            {
                int id; scanf("%d", &id);
                solve.add_edge(id, i+100, 1);//食物到牛左
            }
            solve.add_edge(i+100, i+2*100, 1);//牛左到牛右
            while (d--)
            {
                int id; scanf("%d", &id);
                solve.add_edge(i+2*100, id+3*100, 1);//牛右到饮料
            }
        }
        int ans = solve.max_flow(s, t);
        printf("%d\n", ans);
    }
    return 0;
}
/*
4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3
*/

查看评论

poj3281 - Dining

想看更多的解题报告:http://blog.csdn.net/wangjian8006/article/details/7870410                                ...
  • wangjian8006
  • wangjian8006
  • 2012年09月01日 20:35
  • 3470

POJ 3281-Dining(最大流入门,建图详细解析)

ACM-ICPC 最大流入门题 建图详细解析
  • u010595112
  • u010595112
  • 2014年03月10日 15:10
  • 1113

解题报告 之 POJ3281 Dining

解题报告 之 POJ 3281 Dining 最大流 经典构图 牛吃草问题 食物 饮料 最大分配
  • maxichu
  • maxichu
  • 2015年04月22日 09:28
  • 1156

poj 3281 Dining(最大流)

poj 3281 DiningDescriptionCows are such finicky eaters. Each cow has a preference for certain foods ...
  • llx523113241
  • llx523113241
  • 2015年07月26日 21:06
  • 651

(POJ 3281)Dining --最大流,匹配建图,Dinic

Dining Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10755 Accepted: 4930...
  • STILLxjy
  • STILLxjy
  • 2016年07月30日 12:34
  • 286

POJ 3281 Dining 最大流

Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11866   Accept...
  • discreeter
  • discreeter
  • 2015年11月10日 23:02
  • 258

POJ 3281 Dining(最大流)

题意:有F种食物,D种饮料,N头奶牛只能吃某些食物和饮料(而且只能吃特定的一份),一种食物被一头牛吃了之后,其余牛就不能吃了。问最多可以满足多少牛。 思路:将每头牛拆成两个点,之间连一条容量为1的边...
  • u014664226
  • u014664226
  • 2016年02月26日 22:08
  • 185

poj 3281 Dining(最大流)

题意:有N头牛,F种食物,D种饮料,每头牛有自己喜欢的食物和饮料,每种食物/饮料只能被一头牛享用,每头牛只能享用一种饮料和一种食物,求最后能有几头牛享用到自己喜欢的食物或饮料。 解法:很容易想到建图...
  • u010126535
  • u010126535
  • 2014年05月11日 20:20
  • 366

poj 3281 Dining 最大流

题意: 有n头牛,每头牛都有自己喜欢的食物集和饮料集,现在提供1到f类型的食物各一个和1到d类型的饮料各一个,问最多有多少牛的食物和饮料需求能被同时满足。 分析: 最大流,一开始v-n-f-f-...
  • sepNINE
  • sepNINE
  • 2014年12月23日 08:31
  • 496

POJ - 3281 Dining (最大流)

POJ - 3281  题意: 很多只牛,每只牛都有很多喜欢的食物和饮料,但是每次只能选一个食物和一个饮料,问最终能使多少牛满意 思路: : ) 我能说我是当二分图写的吗,但是后来发现,如果直...
  • m0_37253730
  • m0_37253730
  • 2017年07月11日 09:20
  • 62
    个人资料
    持之以恒
    等级:
    访问量: 5万+
    积分: 4133
    排名: 9084
    最新评论