POJ ~ 3281 ~ Dining (最大流 + 结点容量问题)

题意:John有N头牛,F种食物,D种饮料,编号均从1开始。然后N行,开始两个整数表示f,d表示第i行表示第i头牛喜欢吃的食物数和饮料数,然后依次输入食物编号和饮料编号,问最多满足多少头牛?


结点容量问题:每个结点都有一个允许通过的最大流量,称为结点容量。

解:把每个原始点u分裂成u1和u2两个结点,中间连一条有向弧,容量等于u的节点容量。原先到达u的弧改成到达u1;而原先从u出发的弧改成到达u1,而原来从u出发的弧改成从u2出发。


思路:本题中牛就是结点,一个牛最多只能吃一种食物和喝一种饮料,意思就是结点容量为1。将牛拆为两个点,建立超级源和超级汇。

建图如下:


图片来自:点击打开链接

注意:本题中n可能小于F,D。所以建图的时候不要加n,直接加最大值100就好了。因为这个wa了一上午。。。


#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int MAXN = 1e5 + 5;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int from, to, cap, flow;       //起点,终点,容量,流量
    Edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
    int n, m, s, t;                //结点数,边数(包括反向弧),源点s,汇点t
    vector<Edge> edges;            //边表。edges[e]和edges[e^1]互为反向弧
    vector<int> G[MAXN];           //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
    int d[MAXN];                   //从起点到i的距离(层数差)
    int cur[MAXN];                 //当前弧下标
    bool vis[MAXN];                //BFS分层使用

    void init(int n)
    {
        this->n = n;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }

    void add_edge(int from, int to, int cap)
    {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }

    bool BFS()//构造分层网络
    {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        d[s] = 0;
        vis[s] = true;
        Q.push(s);
        while (!Q.empty())
        {
            int x = Q.front(); Q.pop();
            for (int i = 0; i < G[x].size(); i++)
            {
                Edge& e = edges[G[x][i]];
                if (!vis[e.to] && e.cap > e.flow)
                {
                    vis[e.to] = true;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int DFS(int x, int a)//沿阻塞流增广
    {
        if (x == t || a == 0) return a;
        int flow = 0, f;
        for (int& i = cur[x]; i < G[x].size(); i++)//从上次考虑的弧
        {
            Edge& e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0)//多路增广
            {
                e.flow += f;
                edges[G[x][i]^1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
    int max_flow(int s, int t)
    {
        this->s = s; this->t = t;
        int flow = 0;
        while (BFS())
        {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }
};
Dinic solve;
int main()
{
    int n, F, D;
    while (~scanf("%d%d%d", &n, &F, &D))
    {
        solve.init(4*100+1);
        //0超级源   1 ~ 100食物   1+100 ~ 2*100牛左   2*100+1 ~ 3*100牛右   3*100+1 ~ 4*100饮料   4*100+1超级汇
        int s = 0, t = 4*100+1;
        for (int i = 1; i <= F; i++) solve.add_edge(s, i, 1);//超级源到食物
        for (int i = 1; i <= D; i++) solve.add_edge(i+3*100, t, 1);//饮料到超级汇
        for (int i = 1; i <= n; i++)
        {
            int f, d; scanf("%d%d", &f, &d);
            while (f--)
            {
                int id; scanf("%d", &id);
                solve.add_edge(id, i+100, 1);//食物到牛左
            }
            solve.add_edge(i+100, i+2*100, 1);//牛左到牛右
            while (d--)
            {
                int id; scanf("%d", &id);
                solve.add_edge(i+2*100, id+3*100, 1);//牛右到饮料
            }
        }
        int ans = solve.max_flow(s, t);
        printf("%d\n", ans);
    }
    return 0;
}
/*
4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3
*/

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ZscDst/article/details/79962605
上一篇POJ ~ 1459 ~ Power Network (最大流 + 多源多汇问题 + 输入处理)
下一篇POJ ~ 3041 ~ Asteroids (二分图 + 最小点覆盖)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭