Codeforces ~ 1076D ~ Edge Deletion (最短路,堆优化理解)

探讨了在大规模DAG图中,通过堆优化Dijkstra算法寻找从特定起点出发到达各点的最短路径,并在限制条件下保留关键边以最大化保持最短路径不变的点的数量。介绍了算法实现细节及代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

题意

给你一个n个点,m条边的DAG图,边为双向边,没有重边。现在最多保留k条边,怎么使得好点个数最多。
好点定义为:在原图中1到该点距离和只保留某一些边后的图中1到该点距离不变的点。
先输出保留边的个数,然后输出这些保留的边的编号(1~m)。

思路

堆优化dijkstra中,更新前 k 个点用到的边就是答案。
数据比较大,注意开long long

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 3e5+5;
typedef long long LL;
const LL INF = 0x3f3f3f3f3f3f3f3f;

struct Edge
{
    int from, to; LL dist;       //起点,终点,距离
    Edge(int from, int to, LL dist):from(from), to(to), dist(dist) {}
};

struct Dijkstra
{
    int n, m;                 //结点数,边数(包括反向弧)
    vector<Edge> edges;       //边表。edges[e]和edges[e^1]互为反向弧
    vector<int> G[MAXN];      //邻接表,G[i][j]表示结点i的第j条边在edges数组中的序号
    int vis[MAXN];            //标记数组
    LL d[MAXN];              //s到各个点的最短路
    int p[MAXN];              //上一条弧

    void init(int n)
    {
        this->n = n;
        edges.clear();
        for (int i = 0; i <= n; i++) G[i].clear();
    }

    void AddEdge(int from, int to, int dist)
    {
        edges.emplace_back(from, to, dist);
        m = edges.size();
        G[from].push_back(m - 1);
    }

    struct HeapNode
    {
        int from; LL dist;
        bool operator < (const HeapNode& rhs) const
        {
            return rhs.dist < dist;
        }
        HeapNode(int u, LL w): from(u), dist(w) {}
    };

    void dijkstra(int s, vector<int>& ans, int k)
    {
        priority_queue<HeapNode> Q;
        for (int i = 0; i <= n; i++) d[i] = INF;
        memset(vis, 0, sizeof(vis));
        d[s] = 0;
        Q.push(HeapNode(s, 0));
        while (!Q.empty() && ans.size() <= k)
        {
            HeapNode x = Q.top(); Q.pop();
            int u = x.from;
            if (vis[u]) continue;
            vis[u] = true;
            ans.push_back(p[u]/2);
            for (int i = 0; i < G[u].size(); i++)
            {
                Edge& e = edges[G[u][i]];
                if (d[e.to] > d[u] + e.dist)
                {
                    d[e.to] = d[u] + e.dist;
                    p[e.to] = G[u][i];
                    Q.push(HeapNode(e.to, d[e.to]));
                }
            }
        }
    }
}gao;

int n, m, k;
int vis[MAXN];
int main()
{
    scanf("%d%d%d", &n, &m, &k);
    memset(vis, 0, sizeof(vis));
    gao.init(n);
    while (m--)
    {
        int x, y, w; scanf("%d%d%d", &x, &y, &w);
        gao.AddEdge(x, y, w);
        gao.AddEdge(y, x, w);
    }
    vector<int> ans;
    gao.dijkstra(1, ans, k);
    printf("%d\n", ans.size()-1);
    for (int i = 1; i < ans.size(); i++)
        printf("%d%c", ans[i]+1, i==ans.size()-1?'\n':' ');
    return 0;
}
### Codeforces 平台上的短路径算法题目 #### Dijkstra 算法的应用实例 当面对构建短路径树的需求时,可以采用Dijkstra算法来解决。该方法的核心在于优先选择当前节点能够延伸出去的多条候选边中具有小权重的一条作为扩展方向;而在仅存在唯一一条可能的拓展边的情况下,则直接选取这条边继续探索过程[^1]。 ```python import heapq def dijkstra(graph, start): n = len(graph) dist = [float('inf')] * n dist[start] = 0 heap = [(0, start)] while heap: current_dist, u = heapq.heappop(heap) if current_dist != dist[u]: continue for v, weight in graph[u].items(): alt = dist[u] + weight if alt < dist[v]: dist[v] = alt heapq.heappush(heap, (alt, v)) return dist ``` #### Floyd-Warshall 算法处理复杂情况下的优化策略 对于涉及多个源点之间的短路径计算问题,Floyd-Warshall是一个有效的解决方案。然而,在某些特定场景下(比如本题),通过预先给定的信息可以直接定位受影响的部分并加以简化,从而避免不必要的全量遍历操作,达到降低时间复杂度的效果。值得注意的是,在累加过程中应当选用`long long`类型的变量以防止溢出错误的发生[^2]。 #### 单源短路径查询案例解析 考虑到从指定起点出发前往其余各个顶点间的短距离需求,此情形适用于单源短路径类别的算法实现方式。具体而言,即是从某固定位置开始测量至其它任意可达地点的距离长度,并针对不可达的情形输出特殊标记值 `-1` 表明无法访问的状态[^3]。 ```cpp #include<bits/stdc++.h> using namespace std; const int INF=0x3f3f3f; vector<pair<int,int>> adj[100]; int dis[100]; void spfa(int src){ queue<int> q; vector<bool> vis(100,false); fill(dis,dis+100,INF); dis[src]=0;q.push(src); while(!q.empty()){ int cur=q.front();q.pop(); vis[cur]=false; for(auto& edge : adj[cur]){ int next=edge.first,cost=edge.second; if(dis[next]>dis[cur]+cost){ dis[next]=dis[cur]+cost; if(!vis[next]){ vis[next]=true; q.push(next); } } } } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值