HDU ~ 4632 ~ Palindrome subsequence(区间DP,容斥,回文子序列个数)

在这里插入图片描述

题意

T组测试数据,每组给你一个序列,问这个序列有多少个回文子序列, m o d 1 0 4 + 7 mod\quad 10^4+7 mod104+7

思路

d p [ i ] [ j ] dp[i][j] dp[i][j]表示 [ i , j ] [i,j] [i,j]区间有多少个回文子序列
s [ i ] ! = s [ j ] s[i]!=s[j] s[i]!=s[j],通过容斥可得 d p [ i ] [ j ] = d p [ i + 1 ] [ j ] + d p [ i ] [ j − 1 ] − d p [ i + 1 ] [ j − 1 ] dp[i][j] = dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1] dp[i][j]=dp[i+1][j]+dp[i][j1]dp[i+1][j1]
s [ i ] = = s [ j ] s[i]==s[j] s[i]==s[j],这种情况比①情况又多了一些答案, i 和 j 可以形成一个回文子序列,i 和 j 组上 d p [ i + 1 ] [ j − 1 ] dp[i+1][j-1] dp[i+1][j1]也可以形成新的回文子序列,所以 d p [ i ] [ j ] = d p [ i + 1 ] [ j ] + d p [ i ] [ j − 1 ] + 1 ; dp[i][j] = dp[i + 1][j] + dp[i][j - 1] + 1; dp[i][j]=dp[i+1][j]+dp[i][j1]+1;

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e3 + 5;
const int MOD = 1e4 + 7;
typedef long long LL;
int n;
char s[MAXN];
LL dp[MAXN][MAXN];
int main()
{
    int T, CASE = 1; scanf("%d%*c", &T);
    while (T--)
    {
        scanf("%s%*c", s);
        n = strlen(s);
        for (int i = 0; i < n; i++) dp[i][i] = 1;
        for (int len = 2; len <= n; len++)
        {
            for (int i = 0; i + len - 1 < n; i++)
            {
                int j = i + len - 1;
                if (s[i] == s[j]) dp[i][j] = dp[i + 1][j] + dp[i][j - 1] + 1;
                else dp[i][j] = dp[i + 1][j] + dp[i][j - 1] - dp[i + 1][j - 1];
                dp[i][j] = (dp[i][j] + MOD) % MOD;
            }
        }
        printf("Case %d: %d\n", CASE++, dp[0][n - 1]);
    }
    return 0;
}  
/*
4
a
aaaaa
goodafternooneveryone
welcometoooxxourproblems
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值