YOLOv8改进原创MobileViTv2系列:全新发布苹果续作加强版,MobileViTv2结构引入移动视觉Transformer的可分离自注意力机制,提升效率和速度。
近年来,计算机视觉在图像和视频处理领域取得了巨大的进展。其中,目标检测是计算机视觉中的一个重要任务,它的应用范围广泛,包括图像识别、视频监控、自动驾驶等。YOLOv8和MobileViTv2是两个备受关注的深度学习模型,它们在目标检测任务上表现出色。本文将介绍一种基于这两个模型的改进版,称为YOLOv8改进原创MobileViTv2系列。
在YOLOv8改进原创MobileViTv2系列中,我们提出了一种新的加强版结构,旨在提高目标检测的性能和效率。该结构引入了移动视觉Transformer的可分离自注意力机制,通过自适应地学习图像中不同区域之间的关系,实现了更准确的目标检测。
下面是该改进版模型的主要代码实现:
import torch
import torch.nn as nn
import torch