YOLOv8改进原创MobileViTv2系列:全新发布苹果续作加强版,MobileViTv2结构引入移动视觉Transformer的可分离自注意力机制,提升效

本文介绍了YOLOv8改进原创MobileViTv2系列,采用移动视觉Transformer的可分离自注意力机制,增强目标检测效率和准确性,适用于图像识别和自动驾驶等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv8改进原创MobileViTv2系列:全新发布苹果续作加强版,MobileViTv2结构引入移动视觉Transformer的可分离自注意力机制,提升效率和速度。

近年来,计算机视觉在图像和视频处理领域取得了巨大的进展。其中,目标检测是计算机视觉中的一个重要任务,它的应用范围广泛,包括图像识别、视频监控、自动驾驶等。YOLOv8和MobileViTv2是两个备受关注的深度学习模型,它们在目标检测任务上表现出色。本文将介绍一种基于这两个模型的改进版,称为YOLOv8改进原创MobileViTv2系列。

在YOLOv8改进原创MobileViTv2系列中,我们提出了一种新的加强版结构,旨在提高目标检测的性能和效率。该结构引入了移动视觉Transformer的可分离自注意力机制,通过自适应地学习图像中不同区域之间的关系,实现了更准确的目标检测。

下面是该改进版模型的主要代码实现:

import torch
import torch.nn as nn
import torch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值