【hdu】2665 Kth number - 可持久化线段树

Kth number

思路:

可持久化线段树(主席树)模板题。(点我学习)

代码:

#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e5+5;
int t, n, m, tot;
int ls[maxn*20], rs[maxn*20], sum[maxn*20], rt[maxn], sorted[maxn], num[maxn];

void build(int l, int r, int &rt){
	rt = ++tot;
	sum[rt] = 0;
	if(l==r){
		return ;
	} 
	int mid = l + r >> 1;
	build(l, mid, ls[rt]);
	build(mid+1, r, rs[rt]);
}

void update(int pos, int l, int r, int &rt, int last){
	rt = ++tot;
	ls[rt] = ls[last];
	rs[rt] = rs[last];
	sum[rt] = sum[last] + 1;
	if(l==r){
		return ;
	}
	int mid = l + r >> 1;
	if(pos<=mid){
		update(pos, l, mid, ls[rt], ls[last]);
	}
	else {
		update(pos, mid+1, r, rs[rt], rs[last]);
	}
}

int query(int L, int R, int l, int r, int k){
	if(l==r){
		return l;
	}
	int mid = l + r >> 1;
	int cnt = sum[ls[R]] - sum[ls[L]];
	if(k <= cnt){
		return query(ls[L], ls[R], l, mid, k);
	}
	else{
		return query(rs[L], rs[R], mid+1, r, k-cnt);
	}
}

int main(){
	int l, r, k;
	scanf("%d", &t);
	while(t--){
		tot = 0;
		scanf("%d %d", &n, &m);
		for(int i = 1; i <= n; ++i){
			scanf("%d", &sorted[i]);
			num[i] = sorted[i];
		}
		sort(sorted+1, sorted+n+1);
		int cnt = unique(sorted+1, sorted+n+1) - sorted - 1;
		build(1, cnt, rt[0]);
		for(int i = 1; i <= n; ++i){
			num[i] = lower_bound(sorted+1, sorted+cnt+1, num[i]) - sorted;
		}
		for(int i = 1; i <= n; ++i){
			update(num[i], 1, cnt, rt[i], rt[i-1]);
		}
		for(int i = 1; i <= m; ++i){
			
			scanf("%d %d %d", &l, &r, &k);
			printf("%d\n", sorted[query(rt[l-1], rt[r], 1, cnt, k)]);
		}
	}
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值