- 博客(2)
- 收藏
- 关注
原创 SECOND笔记
1.背景SECOND: Sparsely Embedded Convolutional Detection在VoxelNet的基础上对其3D CNN的部分改进,引入稀疏卷积。流程:体素特征提取——稀疏卷积中间层——RPN2.贡献1)在仅基于LiDAR的目标检测方法中应用稀疏卷积,增加了训练和推理速度。2)提出稀疏卷积的方法,网络更快3)提出角度损失回归,与其他方法相比有更好的方向回归性能。4)提出新的仅基于LiDAR的数据增强方法3.以下本文只描述SECOND与Voxel
2021-12-24 10:27:03
565
原创 小张的voxelnet 笔记
1.背景2018 CVPR VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection一种one-stage 端到端的3D目标检测网络。移除了人为特征方法,直接操作点云并提取点云的形状信息。2.VFE介绍1)VoxelNet将3D空间转化为等间隔的体素voxels;假设3D空间中D*H*W分别为z,y,x轴的范围。定义每个voxel size 为vD,vH,vW,——>得到将3D空间划分为D'.
2021-12-23 20:26:05
2210
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人