【DFS深度优先搜索】【欧拉筛法】【洛谷P5540】

传送门

/*
	【DFS深度优先搜索】【欧拉筛法】【洛谷P5540】 
	https://www.luogu.com.cn/problem/solution/P5440
	细节+框架+合理化分析 
*/ 
#include<bits/stdc++.h>
using namespace std;
int months[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};
string str;
const int maxn=100000010;
bool nums[maxn];
long long f[10000001],cot=0;
int ans=0;
//每一次进行判断    O(nlongn)  爆点  得优化 
bool prime(int n)
{
	if(n==1) return false;//!!!1它不是素数 
	for(int i=2;i<=sqrt(n);i++)
	{
		if(n%i==0)
			return false;
	}
	return true;
}
bool check(int sum)//检查是否合格 
{
	int year=sum/10000;
	int month=sum/100%100;
	int day=sum%100;
	if(year%400==0||(year%4==0&&year%100!=0))
		months[2]=29;
	else
		months[2]=28; 
	return year>=1&&year<=9999&&month>=1&&month<=12&&day>=1&&day<=months[month];
}
void dfs(int layer,int sum)//O(2e7) 
{
	int num;
	if(layer==8)
	{
		if(check(sum)&&!nums[sum%10000]&&!nums[sum%100]&&!nums[sum])
		{
			ans++;
		}
	}
	else if(str[layer]!='-')
	{
		num=(str[layer]-'0')*pow(10,7-layer);
		dfs(layer+1,num+sum);
	}
	else
	{
		if(layer==4)//优化 月的十位数   
		{
			for(int i=0;i<=1;i++)
			{
				num=i*pow(10,7-layer);
				dfs(layer+1,num+sum);
			}
		}
		else
		{
			for(int i=0;i<=9;i++)
			{
				num=i*pow(10,7-layer);
				dfs(layer+1,num+sum);
			}
		}
	}
}
int main()
{
	/*
		欧拉筛法
		2
		4=true 
		优化 检索速度 O(1)  判断 
	*/ 
	nums[1]=true;//1不是素数 
	long long n=1e8;
    for(long long i=2;i<=n;i++)
    {
        if(!nums[i])
            f[cot++]=i;
        for(long long j=0;j<cot&&i*f[j]<=n;j++)
        {
            nums[f[j]*i]=true;
            if(i%f[j]==0)
                break;
        }
    }
	int t;cin>>t;
	while(t--)
	{
		cin>>str;
		ans=0;
		dfs(0,0);
		cout<<ans<<"\n";
	}
	return 0;
 } 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
思路1(洛谷题解) 设n维球体为α,其半径为r(注意,这是一个设而不求。),其球心X的坐标为(x_1,x_2,…,x_n )。∀A_1,A_2,…,A_(n+1)∈α,点A_i (1≤i≤n+1)坐标为(a_((i,1) ),a_((i,2) ),…,a_((i,n) ) )。由n维球体的定义,得方程组: {█((a_((1,1) )-x_1 )^2+(a_((1,2) )-x_2 )^2+⋯+(a_((1,n) )-x_n )^2=r^2@(a_((2,1) )-x_1 )^2+(a_((2,2) )-x_2 )^2+⋯+(a_((2,n) )-x_n )^2=r^2@⋮@(a_((n+1,1) )-x_1 )^2+(a_((n+1,2) )-x_2 )^2+⋯+(a_((n+1,n) )-x_n )^2=r^2 )┤. 从上往下,将第1个方程与第2个方程相减,将第2个方程与第3个方程相减,……,将第n个方程与第(n+1)个方程相减,得: {█(∑_(i=1)^n▒2(a_((1,i) )-a_((2,i) ) ) x_i=∑_(i=1)^n▒(a_((1,i) )+a_((2,i) ) )(a_((1,i) )-a_((2,i) ) ) @∑_(i=1)^n▒2(a_((2,i) )-a_((3,i) ) ) x_i=∑_(i=1)^n▒(a_((2,i) )+a_((3,i) ) )(a_((2,i) )-a_((3,i) ) ) @⋮@∑_(i=1)^n▒2(a_((n,i) )-a_((n+1,i) ) ) x_i=∑_(i=1)^n▒(a_((n,i) )+a_((n+1,i) ) )(a_((n,i) )-a_((n,i) ) ) )┤. 这是一个线性方程组,其增广矩阵为[■(2(a_((1,1) )-a_((2,1) ) )&⋯&2(a_((1,n) )-a_((2,n) ) )&∑_(i=1)^n▒(a_((1,i) )+a_((2,i) ) )(a_((1,i) )-a_((2,i) ) ) @⋮&⋱&⋮&⋮@2(a_((n,1) )-a_((n+1,1) ) )&⋯&2(a_((n,n) )-a_((n+1,n) ) )&∑_(i=1)^n▒(a_((n,i) )+a_((n+1,i) ) )(a_((n,i) )-a_((n+1,i) ) ) )],可用列主元高斯消元求得其解。 思路2 n(n∈N_+ )维空间中到两个互不重合的点的距离相等的点的集合叫做这两个点的垂直平分图形。 求n维空间中两点的垂直平分图形的方程的基本思路: 设点A坐标为(a_1,a_2,…,a_n ),点B的坐标为(b_1,b_2,…,b_n ),A≠B,它们的垂直平分图形为β。取∀X∈β,其坐标为(x_1,x_2,…,x_n )。 由垂直平分图形的意义,得: |AX|=|BX|⇔|AX|^2=|BX|^2⇔∑_(i=1)^n▒(a_i-x_i )^2 =∑_(i=1)^n▒(b_i-x_i )^2 ⇔(∑_(i=1)^n▒〖a_i〗^2 )-2(∑_(i=1)^n▒〖a_i x_i 〗)+(∑_(i=1)^n▒〖x_i〗^2 )=(∑_(i=1)^n▒〖b_i〗^2 )-2(∑_(i=1)^n▒〖b_i x_i 〗)+(∑_(i=1)^n▒〖x_i〗^2 )⇔∑_(i=1)^n▒〖2(a_i-b_i ) x_i 〗=∑_(i=1)^n▒(a_i+b_i )(a_i-b_i ) . 最后出来的这个等式就是垂直平分图形的方程。 回到题目中,对于∀A_1,A_2,…,A_(n+1)∈α,取A_1,A_2为一对,A_2,A_3为一对,……,A_n,A_(n+1)为一对代入垂直平分图形的方程中,惊奇地发现得到的线性方程组与思路1中相同,接下来的解也相同。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值