描述
求一个0~N-1的排列(即每个数只能出现一次),给出限制条件(一张N*N的表,第i行第j列的1或0,表示为j-1这个数能或不能出现在i-1这个数后面,并保证第i行第i列为0),将这个排列看成一个自然数,求从小到大排序第K个排列。
输入
输入描述:
N<=10,K<=500000第一行为N和K,接下来的N行,每行N个数,0表示不能,1表示能
输出
输出描述:N个数,空格分开
所求的排列
样本输入 1
3 2
0 1 1
1 0 0
0 1 0
示例输出 1
1 0 2
提示
样例输出的 解释:
对于N=3的没有任何限制的情况
第一:0 1 2
第二:0 2 1
第三:1 0 2
第四:1 2 0
第五:2 0 1
第六:2 1 0
根据题目所给的限制条件
由于2不能出现在1后面,0不能出现在2后面
第一:0 2 1
第二:1 0 2
第三:2 1 0
代码如下:
#include<iostream>
#include<vector>
using namespace std;
int n, k; //n*n 第k个序列
int ans; //记录结果数量
vector<int> perm; //存放结果序列
bool isvalid(const vector<vector<int>> & arr,int pre, int curn)
{
if (pre == -1) return true; //第一个数字不用管
if (arr[pre][curn] == 0) return false;//cur不能出现在pre之后
return true; //如果不在首位,并且数字可用,返回true
}
bool dfs(const vector<vector<int>>& arr, vector<bool>& used,int index)
{
if (index > n - 1)
{
ans++;
if (ans == k)
{
for (auto i : perm)
cout << i << ' ';
cout << endl;
return true; //找到了第k个
}
return false;
}
for (int i = 0; i < n; i++)
{
if (!used[i] && isvalid(arr, index > 0 ? perm[index - 1] : -1, i))
{
used[i] = true;
perm.push_back(i);
if (dfs(arr, used, index + 1)) return true;
used[i] = false;
perm.pop_back();
}
}
return false;
}
int main()
{
cin >> n >> k;
vector<vector<int>> arr(n, vector<int>(n)); //存放输入矩阵
vector<bool> used(n, false);//记录每个数用过没
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) cin >> arr[i][j];
dfs(arr, used, 0);
}