数字图像处理 掩模

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
将logo叠加在图片上

将logo图片进行灰度化+阈值处理得到掩模

(需要的部分是置非0 不需要的黑色的部分置0)

在这里插入图片描述

然后需要利用掩模对logo图像和人物图像分别进行处理

对logo图:
需要把黑色部分去掉-----与掩模进行与操作把黑色部分置0

Ps:黑色部分用add叠加时相当于没有

在这里插入图片描述
因为之后需要用add()把两张图进行叠加,为了防止logo有颜色的部分受影响

需要在人物图中把logo有颜色相应的位置置0

(以致于logo图可直接印上去)

在这里插入图片描述
则对人物图:
先对掩模取反
然后对人物图相应部分做与操作

代码:

import cv2
import numpy as np
img=cv2.imread('logo.png')
img3=cv2.imread('lena.png')
img2=img3[0:300,0:360]
img1=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,res=cv2.threshold(img1,10,255,cv2.THRESH_BINARY)#取阈值 10为阈值 255为最大灰度值
img=cv2.bitwise_and(img,img,mask=res)#掩模按位与 黑0 去除
inv=cv2.bitwise_not(res) #取反--用于将接的图片
img2=cv2.bitwise_and(img2,img2,mask=inv)#与掩模0--去掉 方便图片叠加
img_add=cv2.add(img,img2)
img3[0:300,0:360]=img_add #替代原图
cv2.imshow("s",img3)
cv2.waitKey(0)

阈值变化可以参考
阈值处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值