Given a positive integer n, break it into the sum of at least two positive integers and maximize the product of those integers. Return the maximum product you can get.
For example, given n = 2, return 1 (2 = 1 + 1); given n = 10, return 36 (10 = 3 + 3 + 4).
Note: You may assume that n is not less than 2 and not larger than 58.
分析了一下 2-10 ,发现把数尽可能分解成3能使乘积最大化
public class Solution {
public int integerBreak(int n) {
if(n==2) return 1;
else if(n==3) return 2;
int ans = 1;
while(n>=5){
ans *= 3;
n -= 3;
}
return ans*n;
}
}
贴一下别人的解释
The first thing we should consider is : What is the max product if we break a number N into two factors?
I use a function to express this product: f=x(N-x)
When x=N/2, we get the maximum of this function.
However, factors should be integers. Thus the maximum is (N/2)*(N/2) when N is even or (N-1)/2 *(N+1)/2 when N is odd.
When the maximum of f is larger than N, we should do the break.
(N/2)*(N/2)>=N, then N>=4
(N-1)/2 *(N+1)/2>=N, then N>=5
These two expressions mean that factors should be less than 4, otherwise we can do the break and get a better product. The factors in last result should be 1, 2 or 3. Obviously, 1 should be abandoned. Thus, the factors of the perfect product should be 2 or 3.
The reason why we should use 3 as many as possible is
For 6, 3 * 3>2 * 2 * 2. Thus, the optimal product should contain no more than three 2.