Description
你突然有了一个大房子,房子里面有一些房间。事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子。在一开始的时候,相邻的格子之间都有墙隔着。
你想要打通一些相邻房间的墙,使得所有房间能够互相到达。在此过程中,你不能把房子给打穿,或者打通柱子(以及柱子旁边的墙)。同时,你不希望在房子中有小偷的时候会很难抓,所以你希望任意两个房间之间都只有一条通路。现在,你希望统计一共有多少种可行的方案。
Input
第一行两个数分别表示n和m。
接下来n行,每行m个字符,每个字符都会是’.’或者’*’,其中’.’代表房间,’*’代表柱子。
Output
一行一个整数,表示合法的方案数 Mod 10^9
Sample Input
3 3
…
…
.*.
Sample Output
15
HINT
对于前100%的数据,n,m<=9
=
Source
矩阵树裸题?
注意模数不是质数多一个
l
o
g
log
log
复杂度
O
(
n
6
l
o
g
(
n
2
)
)
O(n^6log(n^2))
O(n6log(n2))
#include<bits/stdc++.h>
using namespace std;
#define rep(i,j,k) for(int i = j;i <= k;++i)
#define repp(i,j,k) for(int i = j;i >= k;--i)
#define rept(i,x) for(int i = linkk[x];i;i = e[i].n)
#define P pair<int,int>
#define Pil pair<int,ll>
#define Pli pair<ll,int>
#define Pll pair<ll,ll>
#define pb push_back
#define pc putchar
#define mp make_pair
#define file(k) memset(k,0,sizeof(k))
#define ll long long
int rd()
{
int sum = 0;char c = getchar();bool flag = true;
while(c < '0' || c > '9') {if(c == '-') flag = false;c = getchar();}
while(c >= '0' && c <= '9') sum = sum * 10 + c - 48,c = getchar();
if(flag) return sum;
else return -sum;
}
int n,m;
int id[10][10],tot;
char c[10][10];
int f[100][100];
const int p = 1e9;
inline int del(int a,int b){return (a-b+p)%p;}
inline int mul(int a,int b){return 1ll*a*b%p;}
inline void mo(int &x){x = (x%p+p)%p;}
int getdet(int n)
{
int det = 1,fl = 0;
rep(i,1,n) rep(j,i+1,n)
{
int A = f[i][i],B = f[j][i];
while(B)
{
int t = A/B;A %= B;swap(A,B);
rep(k,i,n) f[i][k] = del(f[i][k],mul(t,f[j][k]));
rep(k,i,n) swap(f[i][k],f[j][k]);
fl ^= 1;
}
if(f[i][i] == 0) return 0;
}
rep(i,1,n) det = mul(det,f[i][i]);
return fl?(p-det):det;
}
int main()
{
n = rd();m = rd();
rep(i,1,n) scanf("%s",c[i]+1);
rep(i,1,n) rep(j,1,m) if(c[i][j] == '.') id[i][j] = ++tot;
rep(i,1,n) rep(j,1,m)
if(c[i][j] == '.')
{
if(i<n && c[i+1][j] == '.') f[id[i][j]][id[i+1][j]] = f[id[i+1][j]][id[i][j]] = -1,f[id[i][j]][id[i][j]]++,f[id[i+1][j]][id[i+1][j]]++;
if(j<m && c[i][j+1] == '.') f[id[i][j]][id[i][j+1]] = f[id[i][j+1]][id[i][j]] = -1,f[id[i][j]][id[i][j]]++,f[id[i][j+1]][id[i][j+1]]++;
}
n = tot;
rep(i,1,n) rep(j,1,n) mo(f[i][j]);
int ans = getdet(n-1);
printf("%d\n",ans);
return 0;
}