spi的初步认识

本文深入探讨了SPI(Service Provider Interface)机制的工作原理及其在Java开发中的应用。SPI允许应用程序在运行时发现并加载实现特定服务接口的提供者,从而实现了模块间的解耦和动态扩展。文章详细介绍了如何定义接口、创建实现类以及使用ServiceLoader加载这些实现,最后通过数据库驱动的实例展示了SPI在实际场景中的应用。

 

spi一般都是官方定义好一个规则,硬件厂家根据这个接口定义的规则,结合自己产品的情况给出对应的实现,所以不同的厂家会有不同的实现,这就使得我们使用者的使用的难度加大。spi的出现解决了这一问题,我们只需要给出对应的配置参数,就能通过接口获取到对应的实现类对象。

下面这段代码是一个spi的简单实现,使用的是jdk封装好的ServiceLoader,首先定义一个接口:

public interface ServiceProvider {

	public void call();
}

然后在定义这个接口的两个实现类,这两个实现类就代表了两个厂家对这个接口规则的实现:

public class ServiceProductA implements ServiceProvider{

	@Override
	public void call() {
		System.out.println("this is product A of the service");
	}
}
public class ServiceProductB implements ServiceProvider{

	@Override
	public void call() {
		System.out.println("this is product B of the service");
	}
}

在我们日常的使用中,想要获取到指定的接口实现类,我们需要在new对象的时候指定该实现类的类名,并且要将该类导入进来,这里我们使用jdk的ServiceLoader:

public class ServiceProviderTest {

	public static void main(String[] args) {
		ServiceLoader<ServiceProvider> load = ServiceLoader.load(ServiceProvider.class);
		for (ServiceProvider service : load) {
			service.call();
		}
	}
}

这个ServiceLoder的load方法会根据它的参数,去指定的地方(META-INF/services)下查看一个文件名为该参数的全路径的文件,并加载该文件中记录的参数接口的实现类的全路径,如果路径不正确,就会抛出异常,如我们在文件中写入第一个实现类的全路径:

com.javabase.spi.ServiceProductA

我们会得到以下运行结果: this is product A of the service

以上就是一个spi的简单实现,其实在我们日常的开发中,我们天天和spi打交道,最常见的就是数据库驱动的实现,不同的数据库对JDBC有自己的一套实现,我们在获取数据库连接的时候,首先需要加载数据库驱动,我们只需要定义好该数据库指定的url参数,就能获取到该数据库指定的数据库驱动,获取到驱动,我们才能连接数据库,进行数据操作。

来源:https://my.oschina.net/u/3441184/blog/889614

往期推荐:

史上最强Tomcat8性能优化

日均5亿查询量的京东到家订单中心,为什么舍MySQL用ES?

四张图带你了解Tomcat系统架构--让面试官颤抖的Tomcat回答系列!

“12306”架构到底有多牛逼--秒杀系统的艺术

阿里巴巴为什么能抗住90秒100亿?--服务端高并发分布式架构演进之路

B2B电商平台--ChinaPay银联电子支付功能

学会Zookeeper分布式锁,让面试官对你刮目相看

SpringCloud电商秒杀微服务-Redisson分布式锁方案

一只 有深度 有灵魂 的公众号0.0

(Kriging_NSGA2)克里金模型结合多目标遗传算法求最优因变量及对应的最佳自变量组合研究(Matlab代码实现)内容概要:本文介绍了克里金模型(Kriging)与多目标遗传算法NSGA-II相结合的方法,用于求解最优因变量及其对应的最佳自变量组合,并提供了完整的Matlab代码实现。该方法首先利用克里金模型构建高精度的代理模型,逼近复杂的非线性系统响应,减少计算成本;随后结合NSGA-II算法进行多目标优化,搜索帕累托前沿解集,从而获得多个最优折衷方案。文中详细阐述了代理模型构建、算法集成流程及参数设置,适用于工程设计、参数反演等复杂优化问题。此外,文档还展示了该方法在SCI一区论文中的复现应用,体现了其科学性与实用性。; 适合人群:具备一定Matlab编程基础,熟悉优化算法和数值建模的研究生、科研人员及工程技术人员,尤其适合从事仿真优化、实验设计、代理模型研究的相关领域工作者。; 使用场景及目标:①解决高计算成本的多目标优化问题,通过代理模型降低仿真次数;②在无法解析求导或函数高度非线性的情况下寻找最优变量组合;③复现SCI高水平论文中的优化方法,提升科研可信度与效率;④应用于工程设计、能源系统调度、智能制造等需参数优化的实际场景。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现过程,重点关注克里金模型的构建步骤与NSGA-II的集成方式,建议自行调整测试函数或实际案例验证算法性能,并配合YALMIP等工具包扩展优化求解能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值