Problem Description
度度熊为了完成毕业论文,需要收集一些数据来支撑他的论据,于是设计了一份包含 mm 个问题的调查问卷,每个问题只有 'A' 和 'B' 两种选项。
将问卷散发出去之后,度度熊收到了 nn 份互不相同的问卷,在整理结果的时候,他发现可以只保留其中的一部分问题,使得这 nn 份问卷仍然是互不相同的。这里认为两张问卷是不同的,当且仅当存在至少一个被保留的问题在这两份问卷中的回答不同。
现在度度熊想知道,存在多少个问题集合,使得这 nn 份问卷在只保留这个集合的问题之后至少有 kk 对问卷是不同的。
Input
第一行包含一个整数 TT,表示有 TT 组测试数据。
接下来依次描述 TT 组测试数据。对于每组测试数据:
第一行包含三个整数 nn,mm 和 kk,含义同题目描述。
接下来 nn 行,每行包含一个长度为 mm 的只包含 'A' 和 'B' 的字符串,表示这份问卷对每个问题的回答。
保证 1 \leq T \leq 1001≤T≤100,1 \leq n \leq 10^31≤n≤103,1 \leq m \leq 101≤m≤10,1 \leq k \leq 10^61≤k≤106,给定的 nn 份问卷互不相同。
Output
对于每组测试数据,输出一行信息 "Case #x: y"(不含引号),其中 x 表示这是第 xx 组测试数据,y 表示满足条件的问题集合的个数,行末不要有多余空格。
Sample Input
2 2 2 1 AA BB 2 2 2 AA BB
Sample Output
Copy
Case #1: 3 Case #2: 0
思路:
思路有点搓。
看到m最大是10,就想到状压一下,然后枚举所有集合状态,求一下>=k的状态有多少。
不过,这样暴力求解的时候,需要注意 2个问卷不同的状态 可能相同,需要优化一下,不然会TLE。
代码:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int maxn=1e3+10;
const int N=(1<<11)+10;
char a[maxn][20];
int cnt;
pair<int,int>st[N];
int dp[N];
int vis[N];
int main()
{
int t;
int ans=0;
scanf("%d",&t);
while(t--)
{
int n,m,k;
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
cnt=0;
scanf("%d%d%d",&n,&m,&k);
for(int i=1; i<=n; i++)
{
scanf("%s",a[i]);
}
int state,flag;
for(int i=1; i<=n; i++)
{
for(int j=i+1; j<=n; j++)
{
state=0;
flag=0;
for(int k=0; k<m; k++)
{
if(a[i][k]!=a[j][k]){state|=(1<<k);flag=1;}
}
if(flag)
{
if(vis[state])
{
st[vis[state]].second++;
}
else
{
vis[state]=cnt;
st[cnt].first=state;
st[cnt++].second=1;
}
}
}
}
int sum=0;
for(int i=0;i<=(1<<m)-1;i++)
{
for(int j=0;j<cnt;j++)
{
if(i&st[j].first)
{
dp[i]+=st[j].second;
}
}
if(dp[i]>=k)sum++;
}
printf("Case #%d: %d\n",++ans,sum);
}
return 0;
}