1
乘积最大子数组
详细描述
给你一个整数数组 nums ,请在时间复杂度为O(n) 下找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积
其他
时间限制: 1000ms
内存限制:256.0MB
输入输出示例
示例1
输入
复制
[2,3,-2,4,-1]
输出
复制
48
class Solution {
public:
/**
* Note: 类名、方法名、参数名已经指定,请勿修改
*
*
* 找到数组中乘积最大的连续子数组,并返回乘积
* @param nums long长整型 vector 原始数组
* @return long长整型
*/
long long GetSubArrayMaxProduct(vector<long>& nums) {
int mv = 0;
for(int i=0; i<nums.size(); i++){
int v = 1;
for(int j=i; j<nums.size(); j++){
v *= nums[j];
mv = max(mv, v);
}
}
return mv;
}
};
2
用户账单逾期扣分
详细描述
给定一个字符串来表示一个用户的账单逾期记录,这个记录仅包含以下两个字符:
'N': 没有逾期,正常
'Y':有逾期
如“YNN”表示用户逾期一次,“NNN”表示用户没有逾期,“NNYYYYYNNYY”表示用户最大连续逾期5次;
用户逾期扣分规则如下:
0< 最大连续逾期 <= 3 3 < 最大连续逾期 <= 7 7 < 最大连续逾期
-10 -15 -25
请根据用户逾期纪录计算返回用户最终逾期扣分数
其他
时间限制: 1000ms
内存限制:256.0MB
输入输出示例
示例1
输入
复制
"NNN"
输出
复制
0
说明
没有逾期,扣0分
示例2
输入
复制
"YYN"
输出
复制
-10
说明
最大连续逾期数2,扣10分
示例3
输入
复制
"NNYYYYYNNYY"
输出
复制
-15
说明
最大连续逾期数5,扣15分
class Solution {
public:
int calDPDScore(string s) {
s.push_back('N');
int mx = 0;
int cnt = 0;
char pre = 'N';
for(int i=0; i<s.size(); i++){
char cur = s[i];
if(pre == 'N' && cur == 'N' ){
continue;
}
else if(pre == 'N' && cur == 'Y' ){
cnt = 1;
}
else if(pre == 'Y' && cur == 'N' ){
mx = max(cnt, mx);
}
else if(pre == 'Y' && cur == 'Y' ){
cnt ++;
}
pre = cur;
}
if(0 < mx && mx <= 3) return -10;
if(3 < mx && mx <= 7) return -15;
if(7 < mx) return -25;
return 0;
}
};
3
最少计算次数
详细描述
给定两个数字 (x, y),允许以下两种计算:
1.同时对两个数加1, 即 (x, y) -> (x+1, y+1)
2.同时对两个数乘2,即 (x, y) -> (x*2, y*2)
求要将 (x, y) 转换成 (X,Y),至少需要多次计算,如果不能转换,返回-1
注:x,y,X,Y > 0
其他
时间限制: 1000ms
内存限制:256.0MB
输入输出示例
示例1
输入
复制
10,100,22,202
输出
复制
2
说明
1. (10, 100) +1 -> (11, 101)
2. (11, 101) *2 -> (22, 202)
示例2
输入
复制
1,2,4,6
输出
复制
2
说明
1. (1, 2) +1 -> (2, 3)
1. (2, 3) *2 -> (4, 6)
#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef long long ll;
class Solution {
public:
long long GetMinCalculateCount(long long rx, long long ry, long long tx, long long ty) {
int cnt = 0;
queue<pair<ll, ll >> q;
q.push({rx, ry});
while(!q.empty()){
int len = q.size();
while(len --){
pair<ll, ll> p = q.front(); q.pop();
ll x = p.first, y = p.second;
if(x == tx && y == ty) return cnt;
if(x+1 <= tx && y+1 <= ty) q.push({x+1, y+1});
if(2*x <= tx && 2*y <= ty) q.push({2*x, 2*y});
}
cnt ++ ;
}
return -1;
}
};
总结
写到这里也结束了,在文章最后放上一个小小的福利,以下为小编自己在学习过程中整理出的一个关于 java开发 的学习思路及方向。从事互联网开发,最主要的是要学好技术,而学习技术是一条慢长而艰苦的道路,不能靠一时激情,也不是熬几天几夜就能学好的,必须养成平时努力学习的习惯,更加需要准确的学习方向达到有效的学习效果。
由于内容较多就只放上一个大概的大纲,需要更及详细的学习思维导图的 点击我的Gitee获取。
还有 高级java全套视频教程 java进阶架构师 视频+资料+代码+面试题!
全方面的java进阶实践技术资料,并且还有技术大牛一起讨论交流解决问题。