poj2549折半枚举

题解:

给n个数,求 a + b + c = d成立的最大的d,没有输出no solution


理解:

开始做的时候都把折半枚举给忘了;

然后看了一下别人的思路,忽然发现是这样枚举的;

使a + b = d - c成立的最大值d;

可以枚举a + b再二分找d - c;

于是我就这样写了...重点是a, b, c, d不同,并且d是最大的;

听他们说用3sum的算法可以做,但我不造怎么弄得,虽然他们给了链接;

但链接过去是英文的,英语是硬伤....


代码如下:

代码太丑了....

#include <cstdio>

#include <algorithm>
#include <vector>

using namespace std;

typedef pair<int, int> pii;
typedef pair<int , pii> pip;

#define x first
#define y second

bool cmp(pip p1, pip p2)
{
    if (p1.x == p2.x) return p1.y.x > p2.y.x;
    else return p1.x < p2.x;
}

void sum_sub(vector<pip> &S_1, vector<int> &S, int m)
{
    for (int i = 0; i < S.size(); ++i)
    {
        for (int j = 0; j < S.size(); ++j)
        {
            if (i == j) continue;
            S_1.push_back(pip(S[i] + S[j] * m, pii(i, j)));
        }
    }
    sort(S_1.begin(), S_1.end(), cmp);
}

bool OK(pip p1, pip p2)
{
    return p1.x == p2.x
        && p1.y.x != p2.y.x
        && p1.y.x != p2.y.y
        && p1.y.y != p2.y.x
        && p1.y.y != p2.y.y;
}

int solve(vector<pip> &S_1, vector<pip> &S_2, vector<int> S)
{
    int mx = -(0x7fffffff - 100);
    for (int i = 0; i < S_1.size(); ++i)
    {
        int id = lower_bound(S_2.begin(), S_2.end(), pip(S_1[i].x, pii(0x7fffffff, 0x7fffffff)), cmp) - S_2.begin();
        if (id != S_1.size() && OK(S_1[i], S_2[id]))
        {
            mx = (mx < S[S_2[id].y.x] ? S[S_2[id].y.x] : mx);
        }
    }
    return mx;
}

int main()
{
    int n;
    while (scanf("%d", &n) && n)
    {
        vector<int> S(n);
        for (int i = 0; i < n; ++i)
        {
            scanf("%d", &S[i]);
        }

        vector<pip> S_1, S_2;
        sum_sub(S_1, S, 1);
        sum_sub(S_2, S, -1);

        int ans = solve(S_1, S_2, S);
        ans == -(0x7fffffff - 100) ? printf("no solution\n") : printf("%d\n", ans);
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值